网络风险与股票收益截面

Daniel Celeny, Loïc Maréchal
{"title":"网络风险与股票收益截面","authors":"Daniel Celeny, Loïc Maréchal","doi":"arxiv-2402.04775","DOIUrl":null,"url":null,"abstract":"We extract firms' cyber risk with a machine learning algorithm measuring the\nproximity between their disclosures and a dedicated cyber corpus. Our approach\noutperforms dictionary methods, uses full disclosure and not devoted-only\nsections, and generates a cyber risk measure uncorrelated with other firms'\ncharacteristics. We find that a portfolio of US-listed stocks in the high cyber\nrisk quantile generates an excess return of 18.72\\% p.a. Moreover, a long-short\ncyber risk portfolio has a significant and positive risk premium of 6.93\\%\np.a., robust to all factors' benchmarks. Finally, using a Bayesian asset\npricing method, we show that our cyber risk factor is the essential feature\nthat allows any multi-factor model to price the cross-section of stock returns.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyber risk and the cross-section of stock returns\",\"authors\":\"Daniel Celeny, Loïc Maréchal\",\"doi\":\"arxiv-2402.04775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extract firms' cyber risk with a machine learning algorithm measuring the\\nproximity between their disclosures and a dedicated cyber corpus. Our approach\\noutperforms dictionary methods, uses full disclosure and not devoted-only\\nsections, and generates a cyber risk measure uncorrelated with other firms'\\ncharacteristics. We find that a portfolio of US-listed stocks in the high cyber\\nrisk quantile generates an excess return of 18.72\\\\% p.a. Moreover, a long-short\\ncyber risk portfolio has a significant and positive risk premium of 6.93\\\\%\\np.a., robust to all factors' benchmarks. Finally, using a Bayesian asset\\npricing method, we show that our cyber risk factor is the essential feature\\nthat allows any multi-factor model to price the cross-section of stock returns.\",\"PeriodicalId\":501045,\"journal\":{\"name\":\"arXiv - QuantFin - Portfolio Management\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2402.04775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.04775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过一种机器学习算法来提取公司的网络风险,该算法测量公司披露信息与专用网络语料库之间的接近程度。我们的方法优于字典方法,使用的是完整披露而非专用部分,并且生成的网络风险度量与其他公司的特征无关。我们发现,处于高网络风险量级的美国上市股票投资组合会产生年均18.72%的超额收益。此外,多空网络风险投资组合会产生年均6.93%的显著正风险溢价,这与所有因素的基准都是稳健的。最后,利用贝叶斯资产定价方法,我们证明了我们的网络风险因子是允许任何多因子模型对股票收益截面进行定价的基本特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyber risk and the cross-section of stock returns
We extract firms' cyber risk with a machine learning algorithm measuring the proximity between their disclosures and a dedicated cyber corpus. Our approach outperforms dictionary methods, uses full disclosure and not devoted-only sections, and generates a cyber risk measure uncorrelated with other firms' characteristics. We find that a portfolio of US-listed stocks in the high cyber risk quantile generates an excess return of 18.72\% p.a. Moreover, a long-short cyber risk portfolio has a significant and positive risk premium of 6.93\% p.a., robust to all factors' benchmarks. Finally, using a Bayesian asset pricing method, we show that our cyber risk factor is the essential feature that allows any multi-factor model to price the cross-section of stock returns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信