具有亚正态或模态施密特𝑝-𝑑-子群的群

Pub Date : 2024-02-09 DOI:10.1515/jgth-2023-0096
Victor S. Monakhov, Irina L. Sokhor
{"title":"具有亚正态或模态施密特𝑝-𝑑-子群的群","authors":"Victor S. Monakhov, Irina L. Sokhor","doi":"10.1515/jgth-2023-0096","DOIUrl":null,"url":null,"abstract":"A Schmidt group is a finite non-nilpotent group such that every proper subgroup is nilpotent. In this paper, we prove that if every Schmidt subgroup of a finite group 𝐺 is subnormal or modular, then <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>G</m:mi> <m:mo>/</m:mo> <m:mi>F</m:mi> </m:mrow> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0096_ineq_0001.png\" /> <jats:tex-math>G/F(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is cyclic. Moreover, for a given prime 𝑝, we describe the structure of finite groups with subnormal or modular Schmidt subgroups of order divisible by 𝑝.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Groups with subnormal or modular Schmidt 𝑝𝑑-subgroups\",\"authors\":\"Victor S. Monakhov, Irina L. Sokhor\",\"doi\":\"10.1515/jgth-2023-0096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Schmidt group is a finite non-nilpotent group such that every proper subgroup is nilpotent. In this paper, we prove that if every Schmidt subgroup of a finite group 𝐺 is subnormal or modular, then <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>G</m:mi> <m:mo>/</m:mo> <m:mi>F</m:mi> </m:mrow> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0096_ineq_0001.png\\\" /> <jats:tex-math>G/F(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is cyclic. Moreover, for a given prime 𝑝, we describe the structure of finite groups with subnormal or modular Schmidt subgroups of order divisible by 𝑝.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2023-0096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

施密特群是一个有限非零能群,它的每个适当子群都是零能的。在本文中,我们证明了如果有限群𝐺 的每个施密特子群都是子常群或模群,那么 G / F ( G ) G/F(G) 是循环群。此外,对于给定素数𝑝,我们描述了具有阶可被𝑝整除的亚正态或模态施密特子群的有限群的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Groups with subnormal or modular Schmidt 𝑝𝑑-subgroups
A Schmidt group is a finite non-nilpotent group such that every proper subgroup is nilpotent. In this paper, we prove that if every Schmidt subgroup of a finite group 𝐺 is subnormal or modular, then G / F ( G ) G/F(G) is cyclic. Moreover, for a given prime 𝑝, we describe the structure of finite groups with subnormal or modular Schmidt subgroups of order divisible by 𝑝.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信