{"title":"揭示纳米级硅颗粒对片状纳米结构 Al-1%Si 合金热稳定性的作用","authors":"Linfei Shuai, Tianlin Huang, Tianbo Yu, Guilin Wu, Xiaoxu Huang","doi":"10.1080/21663831.2024.2316198","DOIUrl":null,"url":null,"abstract":"This study investigates particle governed thermal stability in lamellar-nanostructured Al–1.0%Si using in-situ transmission electron microscopy and post-mortem observations. Microstructural coarsen...We uncover the mechanisms by which dispersed nanoparticles govern Y-junction motion during coarsening of lamellar nanostructures, in particular the synergetic pinning from particle-decorated interc...","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering the role of nanoscale Si particles on the thermal stability of a lamellar-nanostructured Al–1%Si alloy\",\"authors\":\"Linfei Shuai, Tianlin Huang, Tianbo Yu, Guilin Wu, Xiaoxu Huang\",\"doi\":\"10.1080/21663831.2024.2316198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates particle governed thermal stability in lamellar-nanostructured Al–1.0%Si using in-situ transmission electron microscopy and post-mortem observations. Microstructural coarsen...We uncover the mechanisms by which dispersed nanoparticles govern Y-junction motion during coarsening of lamellar nanostructures, in particular the synergetic pinning from particle-decorated interc...\",\"PeriodicalId\":18291,\"journal\":{\"name\":\"Materials Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/21663831.2024.2316198\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21663831.2024.2316198","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本研究利用原位透射电子显微镜和死后观察,研究了颗粒对片状纳米结构 Al-1.0%Si 热稳定性的影响。...我们揭示了分散纳米粒子在片状纳米结构粗化过程中支配 Y 型连接运动的机制,特别是粒子装饰间的协同引力。
Uncovering the role of nanoscale Si particles on the thermal stability of a lamellar-nanostructured Al–1%Si alloy
This study investigates particle governed thermal stability in lamellar-nanostructured Al–1.0%Si using in-situ transmission electron microscopy and post-mortem observations. Microstructural coarsen...We uncover the mechanisms by which dispersed nanoparticles govern Y-junction motion during coarsening of lamellar nanostructures, in particular the synergetic pinning from particle-decorated interc...
期刊介绍:
Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.