强言闭群的有限正则子群

Pub Date : 2024-02-13 DOI:10.1515/jgth-2023-0015
Filipp D. Denissov
{"title":"强言闭群的有限正则子群","authors":"Filipp D. Denissov","doi":"10.1515/jgth-2023-0015","DOIUrl":null,"url":null,"abstract":"In a recent paper by A. A. Klyachko, V. Y. Miroshnichenko, and A. Y. Olshanskii, it is proven that the center of any finite strongly verbally closed group is a direct factor. In this paper, we extend this result to the case of finite normal subgroups of any strongly verbally closed group. It follows that finitely generated nilpotent groups with nonabelian torsion subgroups are not strongly verbally closed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite normal subgroups of strongly verbally closed groups\",\"authors\":\"Filipp D. Denissov\",\"doi\":\"10.1515/jgth-2023-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a recent paper by A. A. Klyachko, V. Y. Miroshnichenko, and A. Y. Olshanskii, it is proven that the center of any finite strongly verbally closed group is a direct factor. In this paper, we extend this result to the case of finite normal subgroups of any strongly verbally closed group. It follows that finitely generated nilpotent groups with nonabelian torsion subgroups are not strongly verbally closed.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2023-0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

A. A. Klyachko、V. Y. Miroshnichenko 和 A. Y. Olshanskii 最近的一篇论文证明,任何有限强言闭群的中心都是直接因子。在本文中,我们将这一结果扩展到任何强言闭群的有限正则子群的情况。由此可知,具有非阿贝尔扭转子群的有限生成零能群不是强封闭群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Finite normal subgroups of strongly verbally closed groups
In a recent paper by A. A. Klyachko, V. Y. Miroshnichenko, and A. Y. Olshanskii, it is proven that the center of any finite strongly verbally closed group is a direct factor. In this paper, we extend this result to the case of finite normal subgroups of any strongly verbally closed group. It follows that finitely generated nilpotent groups with nonabelian torsion subgroups are not strongly verbally closed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信