Cheng Li, Gang Yao, Teng Long, Xiwen Yuan, Peijie Li
{"title":"基于混合固态激光雷达点云的露天矿三维物体检测新方法","authors":"Cheng Li, Gang Yao, Teng Long, Xiwen Yuan, Peijie Li","doi":"10.1155/2024/5854745","DOIUrl":null,"url":null,"abstract":"In recent years, the mining industry has encountered challenges, such as a shortage of human resources, an ongoing emphasis on safety enhancements, and increased ecological preservation requirements. Autonomous mining trucks have emerged as a novel solution to effectively address these issues within open-pit mining operations. To meet the demanding conditions of open-pit mines, characterized by intense vibrations and extreme temperature variations, hybrid solid-state LiDAR has emerged as the primary choice for perception sensors. Recognizing the distinct data structure and distribution disparities between point clouds obtained through nonrepetitive scanning methods of hybrid solid-state LiDAR and traditional mechanical LiDAR, this paper proposed an innovative LiDAR 3D object detection model, PointPillars-HSL (PointPillars-Hybrid Solid-state LiDAR). This approach harmonizes the unique characteristics of open-pit mining environments and hybrid solid-state LiDAR point clouds. It optimizes the model’s preprocessing methodology, augments the dimensionality of pillar features, fine-tunes the loss function, and employs transfer learning techniques to reduce the reliance on specific datasets. The result is the effective deployment of a 3D object detection algorithm customized for hybrid solid-state LiDAR within the specific operational framework of open-pit mining. This achievement has yielded a noteworthy overall vehicle recognition rate of 89.72%.","PeriodicalId":48792,"journal":{"name":"Journal of Sensors","volume":"16 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Method for 3D Object Detection in Open-Pit Mine Based on Hybrid Solid-State LiDAR Point Cloud\",\"authors\":\"Cheng Li, Gang Yao, Teng Long, Xiwen Yuan, Peijie Li\",\"doi\":\"10.1155/2024/5854745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the mining industry has encountered challenges, such as a shortage of human resources, an ongoing emphasis on safety enhancements, and increased ecological preservation requirements. Autonomous mining trucks have emerged as a novel solution to effectively address these issues within open-pit mining operations. To meet the demanding conditions of open-pit mines, characterized by intense vibrations and extreme temperature variations, hybrid solid-state LiDAR has emerged as the primary choice for perception sensors. Recognizing the distinct data structure and distribution disparities between point clouds obtained through nonrepetitive scanning methods of hybrid solid-state LiDAR and traditional mechanical LiDAR, this paper proposed an innovative LiDAR 3D object detection model, PointPillars-HSL (PointPillars-Hybrid Solid-state LiDAR). This approach harmonizes the unique characteristics of open-pit mining environments and hybrid solid-state LiDAR point clouds. It optimizes the model’s preprocessing methodology, augments the dimensionality of pillar features, fine-tunes the loss function, and employs transfer learning techniques to reduce the reliance on specific datasets. The result is the effective deployment of a 3D object detection algorithm customized for hybrid solid-state LiDAR within the specific operational framework of open-pit mining. This achievement has yielded a noteworthy overall vehicle recognition rate of 89.72%.\",\"PeriodicalId\":48792,\"journal\":{\"name\":\"Journal of Sensors\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sensors\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5854745\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensors","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/5854745","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Novel Method for 3D Object Detection in Open-Pit Mine Based on Hybrid Solid-State LiDAR Point Cloud
In recent years, the mining industry has encountered challenges, such as a shortage of human resources, an ongoing emphasis on safety enhancements, and increased ecological preservation requirements. Autonomous mining trucks have emerged as a novel solution to effectively address these issues within open-pit mining operations. To meet the demanding conditions of open-pit mines, characterized by intense vibrations and extreme temperature variations, hybrid solid-state LiDAR has emerged as the primary choice for perception sensors. Recognizing the distinct data structure and distribution disparities between point clouds obtained through nonrepetitive scanning methods of hybrid solid-state LiDAR and traditional mechanical LiDAR, this paper proposed an innovative LiDAR 3D object detection model, PointPillars-HSL (PointPillars-Hybrid Solid-state LiDAR). This approach harmonizes the unique characteristics of open-pit mining environments and hybrid solid-state LiDAR point clouds. It optimizes the model’s preprocessing methodology, augments the dimensionality of pillar features, fine-tunes the loss function, and employs transfer learning techniques to reduce the reliance on specific datasets. The result is the effective deployment of a 3D object detection algorithm customized for hybrid solid-state LiDAR within the specific operational framework of open-pit mining. This achievement has yielded a noteworthy overall vehicle recognition rate of 89.72%.
Journal of SensorsENGINEERING, ELECTRICAL & ELECTRONIC-INSTRUMENTS & INSTRUMENTATION
CiteScore
4.10
自引率
5.30%
发文量
833
审稿时长
18 weeks
期刊介绍:
Journal of Sensors publishes papers related to all aspects of sensors, from their theory and design, to the applications of complete sensing devices. All classes of sensor are covered, including acoustic, biological, chemical, electronic, electromagnetic (including optical), mechanical, proximity, and thermal. Submissions relating to wearable, implantable, and remote sensing devices are encouraged.
Envisaged applications include, but are not limited to:
-Medical, healthcare, and lifestyle monitoring
-Environmental and atmospheric monitoring
-Sensing for engineering, manufacturing and processing industries
-Transportation, navigation, and geolocation
-Vision, perception, and sensing for robots and UAVs
The journal welcomes articles that, as well as the sensor technology itself, consider the practical aspects of modern sensor implementation, such as networking, communications, signal processing, and data management.
As well as original research, the Journal of Sensors also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.