Cheng Li, Gang Yao, Teng Long, Xiwen Yuan, Peijie Li
{"title":"基于混合固态激光雷达点云的露天矿三维物体检测新方法","authors":"Cheng Li, Gang Yao, Teng Long, Xiwen Yuan, Peijie Li","doi":"10.1155/2024/5854745","DOIUrl":null,"url":null,"abstract":"In recent years, the mining industry has encountered challenges, such as a shortage of human resources, an ongoing emphasis on safety enhancements, and increased ecological preservation requirements. Autonomous mining trucks have emerged as a novel solution to effectively address these issues within open-pit mining operations. To meet the demanding conditions of open-pit mines, characterized by intense vibrations and extreme temperature variations, hybrid solid-state LiDAR has emerged as the primary choice for perception sensors. Recognizing the distinct data structure and distribution disparities between point clouds obtained through nonrepetitive scanning methods of hybrid solid-state LiDAR and traditional mechanical LiDAR, this paper proposed an innovative LiDAR 3D object detection model, PointPillars-HSL (PointPillars-Hybrid Solid-state LiDAR). This approach harmonizes the unique characteristics of open-pit mining environments and hybrid solid-state LiDAR point clouds. It optimizes the model’s preprocessing methodology, augments the dimensionality of pillar features, fine-tunes the loss function, and employs transfer learning techniques to reduce the reliance on specific datasets. The result is the effective deployment of a 3D object detection algorithm customized for hybrid solid-state LiDAR within the specific operational framework of open-pit mining. This achievement has yielded a noteworthy overall vehicle recognition rate of 89.72%.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Method for 3D Object Detection in Open-Pit Mine Based on Hybrid Solid-State LiDAR Point Cloud\",\"authors\":\"Cheng Li, Gang Yao, Teng Long, Xiwen Yuan, Peijie Li\",\"doi\":\"10.1155/2024/5854745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the mining industry has encountered challenges, such as a shortage of human resources, an ongoing emphasis on safety enhancements, and increased ecological preservation requirements. Autonomous mining trucks have emerged as a novel solution to effectively address these issues within open-pit mining operations. To meet the demanding conditions of open-pit mines, characterized by intense vibrations and extreme temperature variations, hybrid solid-state LiDAR has emerged as the primary choice for perception sensors. Recognizing the distinct data structure and distribution disparities between point clouds obtained through nonrepetitive scanning methods of hybrid solid-state LiDAR and traditional mechanical LiDAR, this paper proposed an innovative LiDAR 3D object detection model, PointPillars-HSL (PointPillars-Hybrid Solid-state LiDAR). This approach harmonizes the unique characteristics of open-pit mining environments and hybrid solid-state LiDAR point clouds. It optimizes the model’s preprocessing methodology, augments the dimensionality of pillar features, fine-tunes the loss function, and employs transfer learning techniques to reduce the reliance on specific datasets. The result is the effective deployment of a 3D object detection algorithm customized for hybrid solid-state LiDAR within the specific operational framework of open-pit mining. This achievement has yielded a noteworthy overall vehicle recognition rate of 89.72%.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5854745\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/5854745","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Novel Method for 3D Object Detection in Open-Pit Mine Based on Hybrid Solid-State LiDAR Point Cloud
In recent years, the mining industry has encountered challenges, such as a shortage of human resources, an ongoing emphasis on safety enhancements, and increased ecological preservation requirements. Autonomous mining trucks have emerged as a novel solution to effectively address these issues within open-pit mining operations. To meet the demanding conditions of open-pit mines, characterized by intense vibrations and extreme temperature variations, hybrid solid-state LiDAR has emerged as the primary choice for perception sensors. Recognizing the distinct data structure and distribution disparities between point clouds obtained through nonrepetitive scanning methods of hybrid solid-state LiDAR and traditional mechanical LiDAR, this paper proposed an innovative LiDAR 3D object detection model, PointPillars-HSL (PointPillars-Hybrid Solid-state LiDAR). This approach harmonizes the unique characteristics of open-pit mining environments and hybrid solid-state LiDAR point clouds. It optimizes the model’s preprocessing methodology, augments the dimensionality of pillar features, fine-tunes the loss function, and employs transfer learning techniques to reduce the reliance on specific datasets. The result is the effective deployment of a 3D object detection algorithm customized for hybrid solid-state LiDAR within the specific operational framework of open-pit mining. This achievement has yielded a noteworthy overall vehicle recognition rate of 89.72%.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.