制造阻燃性更强的硅泡沫/聚钛硅氧烷复合材料

IF 1.7 4区 工程技术 Q4 POLYMER SCIENCE
Weining Du , Chaolu Yin , Hao Huang , Xinguo Ge
{"title":"制造阻燃性更强的硅泡沫/聚钛硅氧烷复合材料","authors":"Weining Du ,&nbsp;Chaolu Yin ,&nbsp;Hao Huang ,&nbsp;Xinguo Ge","doi":"10.1080/1023666X.2024.2311452","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, a series of silicone foam/polytitanosiloxane composites (SF-pTS) were fabricated with hydroxy-, vinyl-, hydrogen-containing polydimethylsiloxanes, and polytitanosiloxane filler in the presence of a platinum catalyst under ambient conditions. The effect of the amount of polytitasiloxane on the micromorphology and flame retardancy of silicone foam was studied, and a relative flame retardancy mechanism was proposed. It could be found that the polytitanosiloxane exhibited a good dispersion level in the silicone foam, thus improving the flame retardancy of the composite. When the content of polytitanosiloxane is 9 wt%, the limiting oxygen index and UL-94 grade of the SF-pTS9 composite are increased to 29.2% and FV-0, respectively. Cone experiment results suggested that the SF-pTS9 possessed relative balanced PHRR (148.9 kW/m<sup>2</sup>), THR (58.5 MJ/m<sup>2</sup>), TSP (0.6 m<sup>2</sup>), and mass residue (83.9%) among the prepared silicone foam materials. This work provides a new avenue to fabricate a silicone foam composite with enhanced flame retardancy.</p></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"29 2","pages":"Pages 75-85"},"PeriodicalIF":1.7000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of silicone foam/polytitanosiloxane composite with enhanced flame retardancy\",\"authors\":\"Weining Du ,&nbsp;Chaolu Yin ,&nbsp;Hao Huang ,&nbsp;Xinguo Ge\",\"doi\":\"10.1080/1023666X.2024.2311452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research, a series of silicone foam/polytitanosiloxane composites (SF-pTS) were fabricated with hydroxy-, vinyl-, hydrogen-containing polydimethylsiloxanes, and polytitanosiloxane filler in the presence of a platinum catalyst under ambient conditions. The effect of the amount of polytitasiloxane on the micromorphology and flame retardancy of silicone foam was studied, and a relative flame retardancy mechanism was proposed. It could be found that the polytitanosiloxane exhibited a good dispersion level in the silicone foam, thus improving the flame retardancy of the composite. When the content of polytitanosiloxane is 9 wt%, the limiting oxygen index and UL-94 grade of the SF-pTS9 composite are increased to 29.2% and FV-0, respectively. Cone experiment results suggested that the SF-pTS9 possessed relative balanced PHRR (148.9 kW/m<sup>2</sup>), THR (58.5 MJ/m<sup>2</sup>), TSP (0.6 m<sup>2</sup>), and mass residue (83.9%) among the prepared silicone foam materials. This work provides a new avenue to fabricate a silicone foam composite with enhanced flame retardancy.</p></div>\",\"PeriodicalId\":14236,\"journal\":{\"name\":\"International Journal of Polymer Analysis and Characterization\",\"volume\":\"29 2\",\"pages\":\"Pages 75-85\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Polymer Analysis and Characterization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000052\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000052","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究以羟基、乙烯基、含氢聚二甲基硅氧烷和聚钛硅氧烷填料为材料,制备了一系列硅泡沫/聚钛硅氧烷复合材料(SF-pTS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of silicone foam/polytitanosiloxane composite with enhanced flame retardancy

In this research, a series of silicone foam/polytitanosiloxane composites (SF-pTS) were fabricated with hydroxy-, vinyl-, hydrogen-containing polydimethylsiloxanes, and polytitanosiloxane filler in the presence of a platinum catalyst under ambient conditions. The effect of the amount of polytitasiloxane on the micromorphology and flame retardancy of silicone foam was studied, and a relative flame retardancy mechanism was proposed. It could be found that the polytitanosiloxane exhibited a good dispersion level in the silicone foam, thus improving the flame retardancy of the composite. When the content of polytitanosiloxane is 9 wt%, the limiting oxygen index and UL-94 grade of the SF-pTS9 composite are increased to 29.2% and FV-0, respectively. Cone experiment results suggested that the SF-pTS9 possessed relative balanced PHRR (148.9 kW/m2), THR (58.5 MJ/m2), TSP (0.6 m2), and mass residue (83.9%) among the prepared silicone foam materials. This work provides a new avenue to fabricate a silicone foam composite with enhanced flame retardancy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
37
审稿时长
1.6 months
期刊介绍: The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization: Characterization and analysis of new and existing polymers and polymeric-based materials. Design and evaluation of analytical instrumentation and physical testing equipment. Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution. Using separation, spectroscopic, and scattering techniques. Surface characterization of polymeric materials. Measurement of solution and bulk properties and behavior of polymers. Studies involving structure-property-processing relationships, and polymer aging. Analysis of oligomeric materials. Analysis of polymer additives and decomposition products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信