Sujin Jose Arul , Priyabatra Adhikary , Jani S. P. , A. Haiter Lenin
{"title":"水分扩散分析及其对有机颗粒填充天然纤维增强混合聚合物复合材料机械性能的影响","authors":"Sujin Jose Arul , Priyabatra Adhikary , Jani S. P. , A. Haiter Lenin","doi":"10.1080/1023666X.2023.2301271","DOIUrl":null,"url":null,"abstract":"<div><p>This investigation explores the water intake characteristics of hybrid composite samples composed of Wood Dust as organic filler (WD), Prosopis Juliflora as fiber (PJF), and epoxy as matrix. The specimens underwent immersion in both distilled and seawater environments for a duration of 240 hours. The composite samples, with compositions of 10WD + 30PJF + 60 PF, 20WD + 20PJF + 60 PF, and 30WD + 10PJF + 60 PF, were subjected to moisture content measurements at different intervals. Mechanical properties were tested following ASTM standards for both dry and wet conditions. Results indicate that seawater immersion leads to higher moisture absorption compared to distilled (condensed) water, with the fiber (PJF)-rich composite (30PJF +10WD + 60 PF) exhibiting the greatest water absorption. The water absorption pattern exhibited by the hybrid composite of WD/PJF/PF does not adhere to a Fickian behavior. Tensile, flexural, and impact properties were evaluated, with the (10WD + 30PJF + 60 PF) specimen showcasing superior performance in dry conditions, boasting a tensile character of 51 MPa, flexural (bending) strength of 60 MPa, and impact value of 1.4 KJ/m<sup>2</sup>. However, its strength diminishes upon exposure to distilled water and seawater. SEM analysis of fractured surfaces from seawater-exposed specimens provides additional insights. In conclusion, this study sheds light on the influence of immersion on moisture absorption and mechanical properties, emphasizing the prevalence of non-Fickian behavior and the varying performance of different compositions, with the (10WD + 30PJF + 60 PF) composition demonstrating remarkable strength under dry conditions.</p></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moisture diffusion analysis and their effects on the mechanical properties of organic particle filled natural fiber reinforced hybrid polymer composites\",\"authors\":\"Sujin Jose Arul , Priyabatra Adhikary , Jani S. P. , A. Haiter Lenin\",\"doi\":\"10.1080/1023666X.2023.2301271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This investigation explores the water intake characteristics of hybrid composite samples composed of Wood Dust as organic filler (WD), Prosopis Juliflora as fiber (PJF), and epoxy as matrix. The specimens underwent immersion in both distilled and seawater environments for a duration of 240 hours. The composite samples, with compositions of 10WD + 30PJF + 60 PF, 20WD + 20PJF + 60 PF, and 30WD + 10PJF + 60 PF, were subjected to moisture content measurements at different intervals. Mechanical properties were tested following ASTM standards for both dry and wet conditions. Results indicate that seawater immersion leads to higher moisture absorption compared to distilled (condensed) water, with the fiber (PJF)-rich composite (30PJF +10WD + 60 PF) exhibiting the greatest water absorption. The water absorption pattern exhibited by the hybrid composite of WD/PJF/PF does not adhere to a Fickian behavior. Tensile, flexural, and impact properties were evaluated, with the (10WD + 30PJF + 60 PF) specimen showcasing superior performance in dry conditions, boasting a tensile character of 51 MPa, flexural (bending) strength of 60 MPa, and impact value of 1.4 KJ/m<sup>2</sup>. However, its strength diminishes upon exposure to distilled water and seawater. SEM analysis of fractured surfaces from seawater-exposed specimens provides additional insights. In conclusion, this study sheds light on the influence of immersion on moisture absorption and mechanical properties, emphasizing the prevalence of non-Fickian behavior and the varying performance of different compositions, with the (10WD + 30PJF + 60 PF) composition demonstrating remarkable strength under dry conditions.</p></div>\",\"PeriodicalId\":14236,\"journal\":{\"name\":\"International Journal of Polymer Analysis and Characterization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Polymer Analysis and Characterization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000039\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000039","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Moisture diffusion analysis and their effects on the mechanical properties of organic particle filled natural fiber reinforced hybrid polymer composites
This investigation explores the water intake characteristics of hybrid composite samples composed of Wood Dust as organic filler (WD), Prosopis Juliflora as fiber (PJF), and epoxy as matrix. The specimens underwent immersion in both distilled and seawater environments for a duration of 240 hours. The composite samples, with compositions of 10WD + 30PJF + 60 PF, 20WD + 20PJF + 60 PF, and 30WD + 10PJF + 60 PF, were subjected to moisture content measurements at different intervals. Mechanical properties were tested following ASTM standards for both dry and wet conditions. Results indicate that seawater immersion leads to higher moisture absorption compared to distilled (condensed) water, with the fiber (PJF)-rich composite (30PJF +10WD + 60 PF) exhibiting the greatest water absorption. The water absorption pattern exhibited by the hybrid composite of WD/PJF/PF does not adhere to a Fickian behavior. Tensile, flexural, and impact properties were evaluated, with the (10WD + 30PJF + 60 PF) specimen showcasing superior performance in dry conditions, boasting a tensile character of 51 MPa, flexural (bending) strength of 60 MPa, and impact value of 1.4 KJ/m2. However, its strength diminishes upon exposure to distilled water and seawater. SEM analysis of fractured surfaces from seawater-exposed specimens provides additional insights. In conclusion, this study sheds light on the influence of immersion on moisture absorption and mechanical properties, emphasizing the prevalence of non-Fickian behavior and the varying performance of different compositions, with the (10WD + 30PJF + 60 PF) composition demonstrating remarkable strength under dry conditions.
期刊介绍:
The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization:
Characterization and analysis of new and existing polymers and polymeric-based materials.
Design and evaluation of analytical instrumentation and physical testing equipment.
Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution.
Using separation, spectroscopic, and scattering techniques.
Surface characterization of polymeric materials.
Measurement of solution and bulk properties and behavior of polymers.
Studies involving structure-property-processing relationships, and polymer aging.
Analysis of oligomeric materials.
Analysis of polymer additives and decomposition products.