关于康伦、福克斯和维格德森的一个猜想

Chunchao Fan, Qizhong Lin, Yuanhui Yan
{"title":"关于康伦、福克斯和维格德森的一个猜想","authors":"Chunchao Fan, Qizhong Lin, Yuanhui Yan","doi":"10.1017/s0963548324000026","DOIUrl":null,"url":null,"abstract":"For graphs <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline1.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline2.png\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Ramsey number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline3.png\" /> <jats:tex-math> $r(G,H)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the smallest positive integer <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline4.png\" /> <jats:tex-math> $N$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that any red/blue edge colouring of the complete graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline5.png\" /> <jats:tex-math> $K_N$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contains either a red <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline6.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> or a blue <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline7.png\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. A book <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline8.png\" /> <jats:tex-math> $B_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a graph consisting of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline9.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> triangles all sharing a common edge. Recently, Conlon, Fox, and Wigderson conjectured that for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline10.png\" /> <jats:tex-math> $0\\lt \\alpha \\lt 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the random lower bound <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline11.png\" /> <jats:tex-math> $r(B_{\\lceil \\alpha n\\rceil },B_n)\\ge (\\sqrt{\\alpha }+1)^2n+o(n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is not tight. In other words, there exists some constant <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline12.png\" /> <jats:tex-math> $\\beta \\gt (\\sqrt{\\alpha }+1)^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline13.png\" /> <jats:tex-math> $r(B_{\\lceil \\alpha n\\rceil },B_n)\\ge \\beta n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for all sufficiently large <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline14.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This conjecture holds for every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline15.png\" /> <jats:tex-math> $\\alpha \\lt 1/6$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by a result of Nikiforov and Rousseau from 2005, which says that in this range <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline16.png\" /> <jats:tex-math> $r(B_{\\lceil \\alpha n\\rceil },B_n)=2n+3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for all sufficiently large <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline17.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We disprove the conjecture of Conlon, Fox, and Wigderson. Indeed, we show that the random lower bound is asymptotically tight for every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline18.png\" /> <jats:tex-math> $1/4\\leq \\alpha \\leq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, we show that for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline19.png\" /> <jats:tex-math> $1/6\\leq \\alpha \\le 1/4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and large <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline20.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline21.png\" /> <jats:tex-math> $r(B_{\\lceil \\alpha n\\rceil }, B_n)\\le \\left (\\frac 32+3\\alpha \\right ) n+o(n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where the inequality is asymptotically tight when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline22.png\" /> <jats:tex-math> $\\alpha =1/6$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline23.png\" /> <jats:tex-math> $1/4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also give a lower bound of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline24.png\" /> <jats:tex-math> $r(B_{\\lceil \\alpha n\\rceil }, B_n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline25.png\" /> <jats:tex-math> $1/6\\le \\alpha \\lt \\frac{52-16\\sqrt{3}}{121}\\approx 0.2007$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, showing that the random lower bound is not tight, i.e., the conjecture of Conlon, Fox, and Wigderson holds in this interval.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a conjecture of Conlon, Fox, and Wigderson\",\"authors\":\"Chunchao Fan, Qizhong Lin, Yuanhui Yan\",\"doi\":\"10.1017/s0963548324000026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For graphs <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline1.png\\\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline2.png\\\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Ramsey number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline3.png\\\" /> <jats:tex-math> $r(G,H)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the smallest positive integer <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline4.png\\\" /> <jats:tex-math> $N$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that any red/blue edge colouring of the complete graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline5.png\\\" /> <jats:tex-math> $K_N$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contains either a red <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline6.png\\\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> or a blue <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline7.png\\\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. A book <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline8.png\\\" /> <jats:tex-math> $B_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a graph consisting of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline9.png\\\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> triangles all sharing a common edge. Recently, Conlon, Fox, and Wigderson conjectured that for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline10.png\\\" /> <jats:tex-math> $0\\\\lt \\\\alpha \\\\lt 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the random lower bound <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline11.png\\\" /> <jats:tex-math> $r(B_{\\\\lceil \\\\alpha n\\\\rceil },B_n)\\\\ge (\\\\sqrt{\\\\alpha }+1)^2n+o(n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is not tight. In other words, there exists some constant <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline12.png\\\" /> <jats:tex-math> $\\\\beta \\\\gt (\\\\sqrt{\\\\alpha }+1)^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline13.png\\\" /> <jats:tex-math> $r(B_{\\\\lceil \\\\alpha n\\\\rceil },B_n)\\\\ge \\\\beta n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for all sufficiently large <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline14.png\\\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This conjecture holds for every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline15.png\\\" /> <jats:tex-math> $\\\\alpha \\\\lt 1/6$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by a result of Nikiforov and Rousseau from 2005, which says that in this range <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline16.png\\\" /> <jats:tex-math> $r(B_{\\\\lceil \\\\alpha n\\\\rceil },B_n)=2n+3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for all sufficiently large <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline17.png\\\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We disprove the conjecture of Conlon, Fox, and Wigderson. Indeed, we show that the random lower bound is asymptotically tight for every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline18.png\\\" /> <jats:tex-math> $1/4\\\\leq \\\\alpha \\\\leq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, we show that for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline19.png\\\" /> <jats:tex-math> $1/6\\\\leq \\\\alpha \\\\le 1/4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and large <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline20.png\\\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline21.png\\\" /> <jats:tex-math> $r(B_{\\\\lceil \\\\alpha n\\\\rceil }, B_n)\\\\le \\\\left (\\\\frac 32+3\\\\alpha \\\\right ) n+o(n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where the inequality is asymptotically tight when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline22.png\\\" /> <jats:tex-math> $\\\\alpha =1/6$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline23.png\\\" /> <jats:tex-math> $1/4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also give a lower bound of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline24.png\\\" /> <jats:tex-math> $r(B_{\\\\lceil \\\\alpha n\\\\rceil }, B_n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000026_inline25.png\\\" /> <jats:tex-math> $1/6\\\\le \\\\alpha \\\\lt \\\\frac{52-16\\\\sqrt{3}}{121}\\\\approx 0.2007$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, showing that the random lower bound is not tight, i.e., the conjecture of Conlon, Fox, and Wigderson holds in this interval.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548324000026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548324000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于图形 $G$ 和 $H$,拉姆齐数 $r(G,H)$ 是最小的正整数 $N$,使得完整图形 $K_N$ 的任何红/蓝边着色都包含红色 $G$ 或蓝色 $H$。一本书 $B_n$ 是由所有共享一条公共边的 $n$ 三角形组成的图形。最近,Conlon、Fox 和 Wigderson 猜想,对于任意 $0\lt \alpha \lt 1$,随机下界 $r(B_{\lceil \alpha n\rceil },B_n)\ge (\sqrt{\alpha }+1)^2n+o(n)$ 并不严密。换句话说,存在某个常数 $beta \gt (\sqrt{\alpha }+1)^2$ ,使得 $r(B_{lceil \alpha n\rceil },B_n)\ge \beta n$ 对于所有足够大的 $n$ 。根据 Nikiforov 和 Rousseau 2005 年的一个结果,这个猜想在每一个 $\alpha \lt 1/6$ 都成立,这个结果说在这个范围内,对于所有足够大的 $n$ ,$r(B_{\lceil \alpha n\rceil },B_n)=2n+3$ 。我们推翻了康伦、福克斯和维格德森的猜想。事实上,我们证明了随机下界对于每 1/4 美元(α)和 1 美元(leq 1)都是渐近紧密的。此外,我们还证明了对于任意1/6leq \alpha \le 1/4$和大$n$,$r(B_{\lceil \alpha n\rceil }, B_n)\le \left (\frac 32+3\alpha \right ) n+o(n)$ ,其中当$\alpha =1/6$或1/4$时,不等式是渐近紧密的。我们还给出了 $r(B{\lceil \alpha n\rceil }, B_n)$ 为 $1/6\le \alpha \lt \frac{52-16\sqrt{3}}{121}\approx 0.2007$ 的下界,表明随机下界并不严密,即 Conlon、Fox 和 Wigderson 的猜想在此区间内成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a conjecture of Conlon, Fox, and Wigderson
For graphs $G$ and $H$ , the Ramsey number $r(G,H)$ is the smallest positive integer $N$ such that any red/blue edge colouring of the complete graph $K_N$ contains either a red $G$ or a blue $H$ . A book $B_n$ is a graph consisting of $n$ triangles all sharing a common edge. Recently, Conlon, Fox, and Wigderson conjectured that for any $0\lt \alpha \lt 1$ , the random lower bound $r(B_{\lceil \alpha n\rceil },B_n)\ge (\sqrt{\alpha }+1)^2n+o(n)$ is not tight. In other words, there exists some constant $\beta \gt (\sqrt{\alpha }+1)^2$ such that $r(B_{\lceil \alpha n\rceil },B_n)\ge \beta n$ for all sufficiently large $n$ . This conjecture holds for every $\alpha \lt 1/6$ by a result of Nikiforov and Rousseau from 2005, which says that in this range $r(B_{\lceil \alpha n\rceil },B_n)=2n+3$ for all sufficiently large $n$ . We disprove the conjecture of Conlon, Fox, and Wigderson. Indeed, we show that the random lower bound is asymptotically tight for every $1/4\leq \alpha \leq 1$ . Moreover, we show that for any $1/6\leq \alpha \le 1/4$ and large $n$ , $r(B_{\lceil \alpha n\rceil }, B_n)\le \left (\frac 32+3\alpha \right ) n+o(n)$ , where the inequality is asymptotically tight when $\alpha =1/6$ or $1/4$ . We also give a lower bound of $r(B_{\lceil \alpha n\rceil }, B_n)$ for $1/6\le \alpha \lt \frac{52-16\sqrt{3}}{121}\approx 0.2007$ , showing that the random lower bound is not tight, i.e., the conjecture of Conlon, Fox, and Wigderson holds in this interval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信