使用低功耗辅助电路和连续输入电流的软开关升压型 DC-DC 转换器

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hossein Ardi, Ali Ajami
{"title":"使用低功耗辅助电路和连续输入电流的软开关升压型 DC-DC 转换器","authors":"Hossein Ardi,&nbsp;Ali Ajami","doi":"10.1049/pel2.12675","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a new high step-up DC–DC converter is presented. The presence of an inductor at converter input reduces input current ripple. Furthermore, a coupled inductor with a voltage multiplier cell is also implemented to increase the voltage gain of the converter. The stored energy in leakage inductance of coupled inductor is recycled by a clamp circuit which increases efficiency and clamps voltage on power switch. The power switch is turned on and off under soft switching condition. The soft switching is also applied to auxiliary switch. All diodes are turned off under zero current condition which causes reverse recovery problem to be alleviated. A very low current flows through auxiliary components in a very short time. Therefore, a very low conduction loss is added to the converter by an auxiliary circuit. Soft switching condition is almost independent of specifications of circuit, especially the output power. Steady-state analysis of the proposed converter is discussed. Finally, to verify the performance and validation of the proposed converter, laboratory results for a prototype with input voltage 30 V, output voltage 240 V, output power 220 W and switching frequency 50 kHz are presented and the results are discussed. The efficiency of the prototype converter at nominal power is 96%.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12675","citationCount":"0","resultStr":"{\"title\":\"A soft switched step-up DC–DC converter using a low-power auxiliary circuit and continuous input current\",\"authors\":\"Hossein Ardi,&nbsp;Ali Ajami\",\"doi\":\"10.1049/pel2.12675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, a new high step-up DC–DC converter is presented. The presence of an inductor at converter input reduces input current ripple. Furthermore, a coupled inductor with a voltage multiplier cell is also implemented to increase the voltage gain of the converter. The stored energy in leakage inductance of coupled inductor is recycled by a clamp circuit which increases efficiency and clamps voltage on power switch. The power switch is turned on and off under soft switching condition. The soft switching is also applied to auxiliary switch. All diodes are turned off under zero current condition which causes reverse recovery problem to be alleviated. A very low current flows through auxiliary components in a very short time. Therefore, a very low conduction loss is added to the converter by an auxiliary circuit. Soft switching condition is almost independent of specifications of circuit, especially the output power. Steady-state analysis of the proposed converter is discussed. Finally, to verify the performance and validation of the proposed converter, laboratory results for a prototype with input voltage 30 V, output voltage 240 V, output power 220 W and switching frequency 50 kHz are presented and the results are discussed. The efficiency of the prototype converter at nominal power is 96%.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12675\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12675\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12675","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新型高升压直流-直流转换器。转换器输入端的电感器可降低输入电流纹波。此外,还采用了一个带有电压倍增器单元的耦合电感器,以提高转换器的电压增益。耦合电感漏感中储存的能量通过钳位电路回收,从而提高效率并钳位电源开关上的电压。电源开关在软开关条件下开启和关闭。软开关也适用于辅助开关。所有二极管都在零电流条件下关闭,从而缓解了反向恢复问题。辅助元件在极短的时间内流过的电流非常小。因此,辅助电路给转换器带来的传导损耗非常低。软开关条件几乎不受电路规格,特别是输出功率的影响。我们还讨论了所提出的转换器的稳态分析。最后,为了验证拟议转换器的性能和有效性,介绍了输入电压 30 V、输出电压 240 V、输出功率 220 W 和开关频率 50 kHz 的原型的实验室结果,并对结果进行了讨论。原型转换器在额定功率下的效率为 96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A soft switched step-up DC–DC converter using a low-power auxiliary circuit and continuous input current

A soft switched step-up DC–DC converter using a low-power auxiliary circuit and continuous input current

A soft switched step-up DC–DC converter using a low-power auxiliary circuit and continuous input current

In this paper, a new high step-up DC–DC converter is presented. The presence of an inductor at converter input reduces input current ripple. Furthermore, a coupled inductor with a voltage multiplier cell is also implemented to increase the voltage gain of the converter. The stored energy in leakage inductance of coupled inductor is recycled by a clamp circuit which increases efficiency and clamps voltage on power switch. The power switch is turned on and off under soft switching condition. The soft switching is also applied to auxiliary switch. All diodes are turned off under zero current condition which causes reverse recovery problem to be alleviated. A very low current flows through auxiliary components in a very short time. Therefore, a very low conduction loss is added to the converter by an auxiliary circuit. Soft switching condition is almost independent of specifications of circuit, especially the output power. Steady-state analysis of the proposed converter is discussed. Finally, to verify the performance and validation of the proposed converter, laboratory results for a prototype with input voltage 30 V, output voltage 240 V, output power 220 W and switching frequency 50 kHz are presented and the results are discussed. The efficiency of the prototype converter at nominal power is 96%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信