{"title":"利用分析建模优化 SiGe S/D NT JLFET 参数,改善 L-BTBT 诱导的 GIDL","authors":"Anchal Thakur, Rohit Dhiman, Girish Wadhwa, Sheetal Bhandari","doi":"10.1002/jnm.3217","DOIUrl":null,"url":null,"abstract":"<p>In the present work, we investigate the impact of structure dimensional parameters on the short channel effects which occurs especially below 20 nm regime particularly gate induced drain leakage (GIDL) current. Using technology computer aided design simulation (TCAD), we have examined the GIDL for SiGe as source/drain in NTJLFET. The structural dimensional parameters such as the nanotube thickness, core and outer gates thickness and gate electrode work function shows the significant impact on the band to band tunneling in lateral direction (L-BTBT) which induced GIDL current. It is analyzed that increase in the nanotube thickness and physical oxide thickness increase the GIDL current, while increasing the gate electrode work function, core gate and outer gate thicknesses gives reduced GIDL current. The SiGe <b>S</b>/D NTJLFET produce a remarkable high <i>I</i><sub>ON</sub>/<i>I</i><sub>OFF</sub> ratio ~ 10<sup>11</sup>. A compact model for GIDL current is also developed which shows the dependency of structure parameters on leakage current. The SiGe has been incorporated as source and drain in NTJLFET which creates the energy band discontinuity. Furthermore, SiGe S/D NTJLFET is fairly compared with the conventional NT JLFET and nanowire (NW) JLFET and shows an improved performance.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameteric optimization of SiGe S/D NT JLFET using analytical modeling to improve L-BTBT induced GIDL\",\"authors\":\"Anchal Thakur, Rohit Dhiman, Girish Wadhwa, Sheetal Bhandari\",\"doi\":\"10.1002/jnm.3217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present work, we investigate the impact of structure dimensional parameters on the short channel effects which occurs especially below 20 nm regime particularly gate induced drain leakage (GIDL) current. Using technology computer aided design simulation (TCAD), we have examined the GIDL for SiGe as source/drain in NTJLFET. The structural dimensional parameters such as the nanotube thickness, core and outer gates thickness and gate electrode work function shows the significant impact on the band to band tunneling in lateral direction (L-BTBT) which induced GIDL current. It is analyzed that increase in the nanotube thickness and physical oxide thickness increase the GIDL current, while increasing the gate electrode work function, core gate and outer gate thicknesses gives reduced GIDL current. The SiGe <b>S</b>/D NTJLFET produce a remarkable high <i>I</i><sub>ON</sub>/<i>I</i><sub>OFF</sub> ratio ~ 10<sup>11</sup>. A compact model for GIDL current is also developed which shows the dependency of structure parameters on leakage current. The SiGe has been incorporated as source and drain in NTJLFET which creates the energy band discontinuity. Furthermore, SiGe S/D NTJLFET is fairly compared with the conventional NT JLFET and nanowire (NW) JLFET and shows an improved performance.</p>\",\"PeriodicalId\":50300,\"journal\":{\"name\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3217\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3217","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Parameteric optimization of SiGe S/D NT JLFET using analytical modeling to improve L-BTBT induced GIDL
In the present work, we investigate the impact of structure dimensional parameters on the short channel effects which occurs especially below 20 nm regime particularly gate induced drain leakage (GIDL) current. Using technology computer aided design simulation (TCAD), we have examined the GIDL for SiGe as source/drain in NTJLFET. The structural dimensional parameters such as the nanotube thickness, core and outer gates thickness and gate electrode work function shows the significant impact on the band to band tunneling in lateral direction (L-BTBT) which induced GIDL current. It is analyzed that increase in the nanotube thickness and physical oxide thickness increase the GIDL current, while increasing the gate electrode work function, core gate and outer gate thicknesses gives reduced GIDL current. The SiGe S/D NTJLFET produce a remarkable high ION/IOFF ratio ~ 1011. A compact model for GIDL current is also developed which shows the dependency of structure parameters on leakage current. The SiGe has been incorporated as source and drain in NTJLFET which creates the energy band discontinuity. Furthermore, SiGe S/D NTJLFET is fairly compared with the conventional NT JLFET and nanowire (NW) JLFET and shows an improved performance.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.