基于球缸耦合声共振器的微型共振光声传感器,用于高灵敏度痕量气体传感

IF 7.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Guojie Wu , Yongjia Zhang , Zhenfeng Gong , Yeming Fan , Jiawei Xing , Xue Wu , Junsheng Ma , Wei Peng , Qingxu Yu , Liang Mei
{"title":"基于球缸耦合声共振器的微型共振光声传感器,用于高灵敏度痕量气体传感","authors":"Guojie Wu ,&nbsp;Yongjia Zhang ,&nbsp;Zhenfeng Gong ,&nbsp;Yeming Fan ,&nbsp;Jiawei Xing ,&nbsp;Xue Wu ,&nbsp;Junsheng Ma ,&nbsp;Wei Peng ,&nbsp;Qingxu Yu ,&nbsp;Liang Mei","doi":"10.1016/j.pacs.2024.100595","DOIUrl":null,"url":null,"abstract":"<div><p>This paper reports a mini-resonant photoacoustic sensor for high-sensitivity trace gas sensing. The sensor primarily contains a sphere-cylinder coupled acoustic resonator, a cylindrical buffer chamber, and a fiber-optic acoustic sensor. The acoustic field distributions of this mini-resonant photoacoustic sensor and the conventional T-type resonant photoacoustic sensor have been carefully evaluated, showing that the first-order resonance frequency of the present mini-resonant photoacoustic sensor is reduced by nearly a half compared to that of the T-type resonant photoacoustic sensor. The volume of the developed photoacoustic cavity is only about 0.8 cm<sup>3</sup>. Trace methane is selected as the target analytical gas and a detection limit of 101 parts-per-billion at 100-s integration time has been achieved, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 1.04 × 10<sup>−8</sup> W·cm<sup>−1</sup>·Hz<sup>−1/2</sup>. The developed mini-resonant photoacoustic sensor provides potential for high-sensitivity trace gas sensing in narrow spaces.</p></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"37 ","pages":"Article 100595"},"PeriodicalIF":7.1000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213597924000120/pdfft?md5=ae959f27aeb110ed22ed395e9b043ed7&pid=1-s2.0-S2213597924000120-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A mini-resonant photoacoustic sensor based on a sphere-cylinder coupled acoustic resonator for high-sensitivity trace gas sensing\",\"authors\":\"Guojie Wu ,&nbsp;Yongjia Zhang ,&nbsp;Zhenfeng Gong ,&nbsp;Yeming Fan ,&nbsp;Jiawei Xing ,&nbsp;Xue Wu ,&nbsp;Junsheng Ma ,&nbsp;Wei Peng ,&nbsp;Qingxu Yu ,&nbsp;Liang Mei\",\"doi\":\"10.1016/j.pacs.2024.100595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper reports a mini-resonant photoacoustic sensor for high-sensitivity trace gas sensing. The sensor primarily contains a sphere-cylinder coupled acoustic resonator, a cylindrical buffer chamber, and a fiber-optic acoustic sensor. The acoustic field distributions of this mini-resonant photoacoustic sensor and the conventional T-type resonant photoacoustic sensor have been carefully evaluated, showing that the first-order resonance frequency of the present mini-resonant photoacoustic sensor is reduced by nearly a half compared to that of the T-type resonant photoacoustic sensor. The volume of the developed photoacoustic cavity is only about 0.8 cm<sup>3</sup>. Trace methane is selected as the target analytical gas and a detection limit of 101 parts-per-billion at 100-s integration time has been achieved, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 1.04 × 10<sup>−8</sup> W·cm<sup>−1</sup>·Hz<sup>−1/2</sup>. The developed mini-resonant photoacoustic sensor provides potential for high-sensitivity trace gas sensing in narrow spaces.</p></div>\",\"PeriodicalId\":56025,\"journal\":{\"name\":\"Photoacoustics\",\"volume\":\"37 \",\"pages\":\"Article 100595\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213597924000120/pdfft?md5=ae959f27aeb110ed22ed395e9b043ed7&pid=1-s2.0-S2213597924000120-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photoacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213597924000120\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597924000120","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于高灵敏度痕量气体传感的微型共振光声传感器。该传感器主要包括一个球缸耦合声共振器、一个圆柱形缓冲腔和一个光纤声传感器。对这种微型共振光声传感器和传统 T 型共振光声传感器的声场分布进行了仔细评估,结果表明,与 T 型共振光声传感器相比,本微型共振光声传感器的一阶共振频率降低了近一半。开发的光声腔体积仅约 0.8 立方厘米。痕量甲烷被选为目标分析气体,在 100 秒积分时间内的检测限为十亿分之 101,对应的归一化噪声等效吸收(NNEA)系数为 1.04 × 10-8 W-cm-1-Hz-1/2。所开发的微型共振光声传感器为在狭窄空间进行高灵敏度痕量气体检测提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A mini-resonant photoacoustic sensor based on a sphere-cylinder coupled acoustic resonator for high-sensitivity trace gas sensing

This paper reports a mini-resonant photoacoustic sensor for high-sensitivity trace gas sensing. The sensor primarily contains a sphere-cylinder coupled acoustic resonator, a cylindrical buffer chamber, and a fiber-optic acoustic sensor. The acoustic field distributions of this mini-resonant photoacoustic sensor and the conventional T-type resonant photoacoustic sensor have been carefully evaluated, showing that the first-order resonance frequency of the present mini-resonant photoacoustic sensor is reduced by nearly a half compared to that of the T-type resonant photoacoustic sensor. The volume of the developed photoacoustic cavity is only about 0.8 cm3. Trace methane is selected as the target analytical gas and a detection limit of 101 parts-per-billion at 100-s integration time has been achieved, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 1.04 × 10−8 W·cm−1·Hz−1/2. The developed mini-resonant photoacoustic sensor provides potential for high-sensitivity trace gas sensing in narrow spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photoacoustics
Photoacoustics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍: The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms. Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring. Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed. These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信