Sara O. van Vloten , Laura Cagigal , Beatriz Pérez-Díaz , Ron Hoeke , Fernando J. Méndez
{"title":"SHyTCWaves:预测热带气旋诱发波浪的定格混合模型","authors":"Sara O. van Vloten , Laura Cagigal , Beatriz Pérez-Díaz , Ron Hoeke , Fernando J. Méndez","doi":"10.1016/j.ocemod.2024.102341","DOIUrl":null,"url":null,"abstract":"<div><p>Waves produced by tropical cyclones (TCs) can be estimated using non-stationary wave models forced with time-varying wind fields. However, dynamical simulations are time and computationally demanding at regional-scale domains since high temporal and spatial resolutions are required to correctly simulate TC-induced wave propagation processes. Applications such as early warning systems, coastal risk assessments and future climate projections benefit from fast and accurate estimates of wave fields induced by close-to-real storm tracks geometry. The proposed SHyTCWaves methodology constitutes a novel tool capable of estimating the spatio-temporal variability of directional wave spectra produced by TCs in deep waters, using a hybrid approach and statistical techniques to reduce CPU time effort. This work demonstrates that TC-induced waves can be reconstructed using a stop-motion approach based on the addition of successive 6 h periods of time-varying storm conditions. The developed hybrid model reduces a TC track to a number of segments that are parameterized in terms of 10 representative TC features, and generates a library of cases dynamically pre-computed which allow to ensemble consecutive 6 h analog segments representing the original TC track. The metamodel has been compared and corrected with available satellite data, and its applicability is exemplified for TC Ofa in the South Pacific.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"188 ","pages":"Article 102341"},"PeriodicalIF":3.1000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1463500324000283/pdfft?md5=0aeb5b491722ebe0a0168a25d806c343&pid=1-s2.0-S1463500324000283-main.pdf","citationCount":"0","resultStr":"{\"title\":\"SHyTCWaves: A stop-motion hybrid model to predict tropical cyclone induced waves\",\"authors\":\"Sara O. van Vloten , Laura Cagigal , Beatriz Pérez-Díaz , Ron Hoeke , Fernando J. Méndez\",\"doi\":\"10.1016/j.ocemod.2024.102341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Waves produced by tropical cyclones (TCs) can be estimated using non-stationary wave models forced with time-varying wind fields. However, dynamical simulations are time and computationally demanding at regional-scale domains since high temporal and spatial resolutions are required to correctly simulate TC-induced wave propagation processes. Applications such as early warning systems, coastal risk assessments and future climate projections benefit from fast and accurate estimates of wave fields induced by close-to-real storm tracks geometry. The proposed SHyTCWaves methodology constitutes a novel tool capable of estimating the spatio-temporal variability of directional wave spectra produced by TCs in deep waters, using a hybrid approach and statistical techniques to reduce CPU time effort. This work demonstrates that TC-induced waves can be reconstructed using a stop-motion approach based on the addition of successive 6 h periods of time-varying storm conditions. The developed hybrid model reduces a TC track to a number of segments that are parameterized in terms of 10 representative TC features, and generates a library of cases dynamically pre-computed which allow to ensemble consecutive 6 h analog segments representing the original TC track. The metamodel has been compared and corrected with available satellite data, and its applicability is exemplified for TC Ofa in the South Pacific.</p></div>\",\"PeriodicalId\":19457,\"journal\":{\"name\":\"Ocean Modelling\",\"volume\":\"188 \",\"pages\":\"Article 102341\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1463500324000283/pdfft?md5=0aeb5b491722ebe0a0168a25d806c343&pid=1-s2.0-S1463500324000283-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Modelling\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1463500324000283\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324000283","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
SHyTCWaves: A stop-motion hybrid model to predict tropical cyclone induced waves
Waves produced by tropical cyclones (TCs) can be estimated using non-stationary wave models forced with time-varying wind fields. However, dynamical simulations are time and computationally demanding at regional-scale domains since high temporal and spatial resolutions are required to correctly simulate TC-induced wave propagation processes. Applications such as early warning systems, coastal risk assessments and future climate projections benefit from fast and accurate estimates of wave fields induced by close-to-real storm tracks geometry. The proposed SHyTCWaves methodology constitutes a novel tool capable of estimating the spatio-temporal variability of directional wave spectra produced by TCs in deep waters, using a hybrid approach and statistical techniques to reduce CPU time effort. This work demonstrates that TC-induced waves can be reconstructed using a stop-motion approach based on the addition of successive 6 h periods of time-varying storm conditions. The developed hybrid model reduces a TC track to a number of segments that are parameterized in terms of 10 representative TC features, and generates a library of cases dynamically pre-computed which allow to ensemble consecutive 6 h analog segments representing the original TC track. The metamodel has been compared and corrected with available satellite data, and its applicability is exemplified for TC Ofa in the South Pacific.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.