{"title":"通过环境统计调和分类与记忆。","authors":"Arjun Devraj, Thomas L Griffiths, Qiong Zhang","doi":"10.3758/s13423-023-02448-2","DOIUrl":null,"url":null,"abstract":"<p><p>How people represent categories and how those representations change over time is a basic question about human cognition. Previous research has demonstrated that people categorize objects by comparing them to category prototypes in early stages of learning but consider the individual exemplars within each category in later stages. However, these results do not seem consistent with findings in the memory literature showing that it becomes increasingly easier to access representations of general knowledge than representations of specific items over time. Why would one rely more on exemplar-based representations in later stages of categorization when it is more difficult to access these exemplars in memory? To reconcile these incongruities, our study proposed that previous findings on categorization are a result of human participants adapting to a specific experimental environment, in which the probability of encountering an object stays uniform over time. In a more realistic environment, however, one would be less likely to encounter the same object if a long time has passed. Confirming our hypothesis, we demonstrated that under environmental statistics identical to typical categorization experiments the advantage of exemplar-based categorization over prototype-based categorization increases over time, replicating previous research in categorization. In contrast, under realistic environmental statistics simulated by our experiments the advantage of exemplar-based categorization over prototype-based categorization decreases over time. A second set of experiments replicated our results, while additionally demonstrating that human categorization is sensitive to the category structure presented to the participants. These results provide converging evidence that human categorization adapts appropriately to environmental statistics.</p>","PeriodicalId":20763,"journal":{"name":"Psychonomic Bulletin & Review","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconciling categorization and memory via environmental statistics.\",\"authors\":\"Arjun Devraj, Thomas L Griffiths, Qiong Zhang\",\"doi\":\"10.3758/s13423-023-02448-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>How people represent categories and how those representations change over time is a basic question about human cognition. Previous research has demonstrated that people categorize objects by comparing them to category prototypes in early stages of learning but consider the individual exemplars within each category in later stages. However, these results do not seem consistent with findings in the memory literature showing that it becomes increasingly easier to access representations of general knowledge than representations of specific items over time. Why would one rely more on exemplar-based representations in later stages of categorization when it is more difficult to access these exemplars in memory? To reconcile these incongruities, our study proposed that previous findings on categorization are a result of human participants adapting to a specific experimental environment, in which the probability of encountering an object stays uniform over time. In a more realistic environment, however, one would be less likely to encounter the same object if a long time has passed. Confirming our hypothesis, we demonstrated that under environmental statistics identical to typical categorization experiments the advantage of exemplar-based categorization over prototype-based categorization increases over time, replicating previous research in categorization. In contrast, under realistic environmental statistics simulated by our experiments the advantage of exemplar-based categorization over prototype-based categorization decreases over time. A second set of experiments replicated our results, while additionally demonstrating that human categorization is sensitive to the category structure presented to the participants. These results provide converging evidence that human categorization adapts appropriately to environmental statistics.</p>\",\"PeriodicalId\":20763,\"journal\":{\"name\":\"Psychonomic Bulletin & Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychonomic Bulletin & Review\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13423-023-02448-2\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychonomic Bulletin & Review","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13423-023-02448-2","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
Reconciling categorization and memory via environmental statistics.
How people represent categories and how those representations change over time is a basic question about human cognition. Previous research has demonstrated that people categorize objects by comparing them to category prototypes in early stages of learning but consider the individual exemplars within each category in later stages. However, these results do not seem consistent with findings in the memory literature showing that it becomes increasingly easier to access representations of general knowledge than representations of specific items over time. Why would one rely more on exemplar-based representations in later stages of categorization when it is more difficult to access these exemplars in memory? To reconcile these incongruities, our study proposed that previous findings on categorization are a result of human participants adapting to a specific experimental environment, in which the probability of encountering an object stays uniform over time. In a more realistic environment, however, one would be less likely to encounter the same object if a long time has passed. Confirming our hypothesis, we demonstrated that under environmental statistics identical to typical categorization experiments the advantage of exemplar-based categorization over prototype-based categorization increases over time, replicating previous research in categorization. In contrast, under realistic environmental statistics simulated by our experiments the advantage of exemplar-based categorization over prototype-based categorization decreases over time. A second set of experiments replicated our results, while additionally demonstrating that human categorization is sensitive to the category structure presented to the participants. These results provide converging evidence that human categorization adapts appropriately to environmental statistics.
期刊介绍:
The journal provides coverage spanning a broad spectrum of topics in all areas of experimental psychology. The journal is primarily dedicated to the publication of theory and review articles and brief reports of outstanding experimental work. Areas of coverage include cognitive psychology broadly construed, including but not limited to action, perception, & attention, language, learning & memory, reasoning & decision making, and social cognition. We welcome submissions that approach these issues from a variety of perspectives such as behavioral measurements, comparative psychology, development, evolutionary psychology, genetics, neuroscience, and quantitative/computational modeling. We particularly encourage integrative research that crosses traditional content and methodological boundaries.