Ling Ding, Xiangyu Wan, Bowen Zheng, Zhenhua Dang, Shuai Zhang and Lin Zhang
{"title":"用脒肟修饰氧化石墨烯支撑的 TixAl1-xOy 基材料的单锅合成,用于高效吸附铀(VI)","authors":"Ling Ding, Xiangyu Wan, Bowen Zheng, Zhenhua Dang, Shuai Zhang and Lin Zhang","doi":"10.1039/D4TA00137K","DOIUrl":null,"url":null,"abstract":"<p >The efficient recovery of uranium from aqueous solutions is crucial for ecological safety and sustainable development. In this case, functionalized nanoparticles provide a promising strategy for the recovery and separation of radionuclides. In this study, a novel graphene oxide-supported, amidoxime functionalized TiO<small><sub>2</sub></small>–Al<small><sub>2</sub></small>O<small><sub>3</sub></small> material (AO-GTA) was successfully prepared for the extraction of uranium. Owing to its uniform structure and abundant exposed active sites, AO-GTA exhibits an excellent adsorption performance for uranium. It could rapidly (<60 min) achieve a high adsorption efficiency (99.7%) for uranium from water and a high static saturated adsorption capacity (875.2 mg g<small><sup>−1</sup></small>), which was far superior to other titanium oxide-based adsorbents. Meanwhile, an uranium extraction experiment in simulated seawater proved that AO-GTA has great application prospects in uranium extraction. The excellent adsorption performance of AO-GTA was attributed to electrostatic interaction, reduction and synergistic complexation. In conclusion, AO-GTA is a promising uranium adsorbent, which will open a new direction for the design of titanium oxide-based adsorbents for the removal of uranium.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 14","pages":" 8381-8391"},"PeriodicalIF":10.7000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-pot synthesis of a graphene oxide-supported TixAl1−xOy-based material modified with amidoxime for highly efficient uranium(vi) adsorption†\",\"authors\":\"Ling Ding, Xiangyu Wan, Bowen Zheng, Zhenhua Dang, Shuai Zhang and Lin Zhang\",\"doi\":\"10.1039/D4TA00137K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The efficient recovery of uranium from aqueous solutions is crucial for ecological safety and sustainable development. In this case, functionalized nanoparticles provide a promising strategy for the recovery and separation of radionuclides. In this study, a novel graphene oxide-supported, amidoxime functionalized TiO<small><sub>2</sub></small>–Al<small><sub>2</sub></small>O<small><sub>3</sub></small> material (AO-GTA) was successfully prepared for the extraction of uranium. Owing to its uniform structure and abundant exposed active sites, AO-GTA exhibits an excellent adsorption performance for uranium. It could rapidly (<60 min) achieve a high adsorption efficiency (99.7%) for uranium from water and a high static saturated adsorption capacity (875.2 mg g<small><sup>−1</sup></small>), which was far superior to other titanium oxide-based adsorbents. Meanwhile, an uranium extraction experiment in simulated seawater proved that AO-GTA has great application prospects in uranium extraction. The excellent adsorption performance of AO-GTA was attributed to electrostatic interaction, reduction and synergistic complexation. In conclusion, AO-GTA is a promising uranium adsorbent, which will open a new direction for the design of titanium oxide-based adsorbents for the removal of uranium.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 14\",\"pages\":\" 8381-8391\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta00137k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta00137k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
One-pot synthesis of a graphene oxide-supported TixAl1−xOy-based material modified with amidoxime for highly efficient uranium(vi) adsorption†
The efficient recovery of uranium from aqueous solutions is crucial for ecological safety and sustainable development. In this case, functionalized nanoparticles provide a promising strategy for the recovery and separation of radionuclides. In this study, a novel graphene oxide-supported, amidoxime functionalized TiO2–Al2O3 material (AO-GTA) was successfully prepared for the extraction of uranium. Owing to its uniform structure and abundant exposed active sites, AO-GTA exhibits an excellent adsorption performance for uranium. It could rapidly (<60 min) achieve a high adsorption efficiency (99.7%) for uranium from water and a high static saturated adsorption capacity (875.2 mg g−1), which was far superior to other titanium oxide-based adsorbents. Meanwhile, an uranium extraction experiment in simulated seawater proved that AO-GTA has great application prospects in uranium extraction. The excellent adsorption performance of AO-GTA was attributed to electrostatic interaction, reduction and synergistic complexation. In conclusion, AO-GTA is a promising uranium adsorbent, which will open a new direction for the design of titanium oxide-based adsorbents for the removal of uranium.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.