Jeremy Y. Ng , Holger Cramer , Myeong Soo Lee , David Moher
{"title":"传统医学、补充医学和综合医学与人工智能:医疗保健领域的新机遇","authors":"Jeremy Y. Ng , Holger Cramer , Myeong Soo Lee , David Moher","doi":"10.1016/j.imr.2024.101024","DOIUrl":null,"url":null,"abstract":"<div><p>The convergence of traditional, complementary, and integrative medicine (TCIM) with artificial intelligence (AI) is a promising frontier in healthcare. TCIM is a patient-centric approach that combines conventional medicine with complementary therapies, emphasizing holistic well-being. AI can revolutionize healthcare through data-driven decision-making and personalized treatment plans. This article explores how AI technologies can complement and enhance TCIM, aligning with the shared objectives of researchers from both fields in improving patient outcomes, enhancing care quality, and promoting holistic wellness. This integration of TCIM and AI introduces exciting opportunities but also noteworthy challenges. AI may augment TCIM by assisting in early disease detection, providing personalized treatment plans, predicting health trends, and enhancing patient engagement. Challenges at the intersection of AI and TCIM include data privacy and security, regulatory complexities, maintaining the human touch in patient-provider relationships, and mitigating bias in AI algorithms. Patients' trust, informed consent, and legal accountability are all essential considerations. Future directions in AI-enhanced TCIM include advanced personalized medicine, understanding the efficacy of herbal remedies, and studying patient-provider interactions. Research on bias mitigation, patient acceptance, and trust in AI-driven TCIM healthcare is crucial. In this article, we outlined that the merging of TCIM and AI holds great promise in enhancing healthcare delivery, personalizing treatment plans, preventive care, and patient engagement. Addressing challenges and fostering collaboration between AI experts, TCIM practitioners, and policymakers, however, is vital to harnessing the full potential of this integration.</p></div>","PeriodicalId":13644,"journal":{"name":"Integrative Medicine Research","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213422024000040/pdfft?md5=b8cbf1adb83572dbee54fa4b37730fde&pid=1-s2.0-S2213422024000040-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Traditional, complementary, and integrative medicine and artificial intelligence: Novel opportunities in healthcare\",\"authors\":\"Jeremy Y. Ng , Holger Cramer , Myeong Soo Lee , David Moher\",\"doi\":\"10.1016/j.imr.2024.101024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The convergence of traditional, complementary, and integrative medicine (TCIM) with artificial intelligence (AI) is a promising frontier in healthcare. TCIM is a patient-centric approach that combines conventional medicine with complementary therapies, emphasizing holistic well-being. AI can revolutionize healthcare through data-driven decision-making and personalized treatment plans. This article explores how AI technologies can complement and enhance TCIM, aligning with the shared objectives of researchers from both fields in improving patient outcomes, enhancing care quality, and promoting holistic wellness. This integration of TCIM and AI introduces exciting opportunities but also noteworthy challenges. AI may augment TCIM by assisting in early disease detection, providing personalized treatment plans, predicting health trends, and enhancing patient engagement. Challenges at the intersection of AI and TCIM include data privacy and security, regulatory complexities, maintaining the human touch in patient-provider relationships, and mitigating bias in AI algorithms. Patients' trust, informed consent, and legal accountability are all essential considerations. Future directions in AI-enhanced TCIM include advanced personalized medicine, understanding the efficacy of herbal remedies, and studying patient-provider interactions. Research on bias mitigation, patient acceptance, and trust in AI-driven TCIM healthcare is crucial. In this article, we outlined that the merging of TCIM and AI holds great promise in enhancing healthcare delivery, personalizing treatment plans, preventive care, and patient engagement. Addressing challenges and fostering collaboration between AI experts, TCIM practitioners, and policymakers, however, is vital to harnessing the full potential of this integration.</p></div>\",\"PeriodicalId\":13644,\"journal\":{\"name\":\"Integrative Medicine Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213422024000040/pdfft?md5=b8cbf1adb83572dbee54fa4b37730fde&pid=1-s2.0-S2213422024000040-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative Medicine Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213422024000040\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Medicine Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213422024000040","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
Traditional, complementary, and integrative medicine and artificial intelligence: Novel opportunities in healthcare
The convergence of traditional, complementary, and integrative medicine (TCIM) with artificial intelligence (AI) is a promising frontier in healthcare. TCIM is a patient-centric approach that combines conventional medicine with complementary therapies, emphasizing holistic well-being. AI can revolutionize healthcare through data-driven decision-making and personalized treatment plans. This article explores how AI technologies can complement and enhance TCIM, aligning with the shared objectives of researchers from both fields in improving patient outcomes, enhancing care quality, and promoting holistic wellness. This integration of TCIM and AI introduces exciting opportunities but also noteworthy challenges. AI may augment TCIM by assisting in early disease detection, providing personalized treatment plans, predicting health trends, and enhancing patient engagement. Challenges at the intersection of AI and TCIM include data privacy and security, regulatory complexities, maintaining the human touch in patient-provider relationships, and mitigating bias in AI algorithms. Patients' trust, informed consent, and legal accountability are all essential considerations. Future directions in AI-enhanced TCIM include advanced personalized medicine, understanding the efficacy of herbal remedies, and studying patient-provider interactions. Research on bias mitigation, patient acceptance, and trust in AI-driven TCIM healthcare is crucial. In this article, we outlined that the merging of TCIM and AI holds great promise in enhancing healthcare delivery, personalizing treatment plans, preventive care, and patient engagement. Addressing challenges and fostering collaboration between AI experts, TCIM practitioners, and policymakers, however, is vital to harnessing the full potential of this integration.
期刊介绍:
Integrative Medicine Research (IMR) is a quarterly, peer-reviewed journal focused on scientific research for integrative medicine including traditional medicine (emphasis on acupuncture and herbal medicine), complementary and alternative medicine, and systems medicine. The journal includes papers on basic research, clinical research, methodology, theory, computational analysis and modelling, topical reviews, medical history, education and policy based on physiology, pathology, diagnosis and the systems approach in the field of integrative medicine.