{"title":"从古代到现代的皮肤微循环史。","authors":"F Jung","doi":"10.3233/CH-248001","DOIUrl":null,"url":null,"abstract":"<p><p> This review spans a wide arc from the first observations of the early anatomists to the present day. William Harvey was the first to describe the heart as the centre of the large and small circulatory system. He thus replaced the previously valid system of Galenos, It was Marcello Malpighi who first described that the capillary system connects the arteries with the veins. In 1688 Antoni van Leeuwenhoek (1632-1686) confirmed these results with a paper on capillary perfusion in the caudal fin of the glass eel. It was then Hermann Boerhave (1668-1738, Leiden) who was the first to carry out microcirculation tests on patients. He studied the microcirculation in the human bulbar conjunctiva. Even today, microcirculation studies in the conjunctiva bulbi of patients are carried out today. Until 1831, it was never quite clear whether the observations reported belonged mainly to the field of microcirculation, which had not yet been defined. This was done in Great Britain by Marshall Hall (1790-1857). Technical Improvements allowed increasingly sophisticated studies of the morphological structure of the terminal vasculature. According to Gustav Ricker (1870-1948, Vienna), the terminal vasculature comprises the functional unit of the smallest arteries, arterioles, capillaries and venules. In 1921 it was still thought that the blood circulation was the sole response to the pumping action of the heart. Even the classic work by Bayliss on the myogenic hypothesis (later referred to as \"blood flow autoregulation\") initially received little attention. More strikingly, even the findings of August Krogh, for which he received the Nobel Prize in Medicine in 1920 (for his discovery of the mechanisms of capillary motor regulation), were ignored. During an outstanding autoregulation symposium held in 1963 a broad consensus was reached on active and passive mechanisms, which is more or less valid till today. The mechanisms of regulation of capillary blood flow are now largely understood, although not completely resolved. The development of video systems with recording capability and automated off-line recording of capillary erythrocyte velocities allowed the application of morphological and dynamic studies of cutaneous capillaries in humans. These reopened the field of physiological or pathophysiological questions again for many groups worldwide. Since 1955, many publications on \"microcirculation (5423)\" and \"capillary microscopy (2195)\" have been listed in pubmed.</p>","PeriodicalId":93943,"journal":{"name":"Clinical hemorheology and microcirculation","volume":" ","pages":"29-50"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"History of the cutaneous microcirculation from antiquity to modern times.\",\"authors\":\"F Jung\",\"doi\":\"10.3233/CH-248001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p> This review spans a wide arc from the first observations of the early anatomists to the present day. William Harvey was the first to describe the heart as the centre of the large and small circulatory system. He thus replaced the previously valid system of Galenos, It was Marcello Malpighi who first described that the capillary system connects the arteries with the veins. In 1688 Antoni van Leeuwenhoek (1632-1686) confirmed these results with a paper on capillary perfusion in the caudal fin of the glass eel. It was then Hermann Boerhave (1668-1738, Leiden) who was the first to carry out microcirculation tests on patients. He studied the microcirculation in the human bulbar conjunctiva. Even today, microcirculation studies in the conjunctiva bulbi of patients are carried out today. Until 1831, it was never quite clear whether the observations reported belonged mainly to the field of microcirculation, which had not yet been defined. This was done in Great Britain by Marshall Hall (1790-1857). Technical Improvements allowed increasingly sophisticated studies of the morphological structure of the terminal vasculature. According to Gustav Ricker (1870-1948, Vienna), the terminal vasculature comprises the functional unit of the smallest arteries, arterioles, capillaries and venules. In 1921 it was still thought that the blood circulation was the sole response to the pumping action of the heart. Even the classic work by Bayliss on the myogenic hypothesis (later referred to as \\\"blood flow autoregulation\\\") initially received little attention. More strikingly, even the findings of August Krogh, for which he received the Nobel Prize in Medicine in 1920 (for his discovery of the mechanisms of capillary motor regulation), were ignored. During an outstanding autoregulation symposium held in 1963 a broad consensus was reached on active and passive mechanisms, which is more or less valid till today. The mechanisms of regulation of capillary blood flow are now largely understood, although not completely resolved. The development of video systems with recording capability and automated off-line recording of capillary erythrocyte velocities allowed the application of morphological and dynamic studies of cutaneous capillaries in humans. These reopened the field of physiological or pathophysiological questions again for many groups worldwide. Since 1955, many publications on \\\"microcirculation (5423)\\\" and \\\"capillary microscopy (2195)\\\" have been listed in pubmed.</p>\",\"PeriodicalId\":93943,\"journal\":{\"name\":\"Clinical hemorheology and microcirculation\",\"volume\":\" \",\"pages\":\"29-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical hemorheology and microcirculation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/CH-248001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical hemorheology and microcirculation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/CH-248001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
History of the cutaneous microcirculation from antiquity to modern times.
This review spans a wide arc from the first observations of the early anatomists to the present day. William Harvey was the first to describe the heart as the centre of the large and small circulatory system. He thus replaced the previously valid system of Galenos, It was Marcello Malpighi who first described that the capillary system connects the arteries with the veins. In 1688 Antoni van Leeuwenhoek (1632-1686) confirmed these results with a paper on capillary perfusion in the caudal fin of the glass eel. It was then Hermann Boerhave (1668-1738, Leiden) who was the first to carry out microcirculation tests on patients. He studied the microcirculation in the human bulbar conjunctiva. Even today, microcirculation studies in the conjunctiva bulbi of patients are carried out today. Until 1831, it was never quite clear whether the observations reported belonged mainly to the field of microcirculation, which had not yet been defined. This was done in Great Britain by Marshall Hall (1790-1857). Technical Improvements allowed increasingly sophisticated studies of the morphological structure of the terminal vasculature. According to Gustav Ricker (1870-1948, Vienna), the terminal vasculature comprises the functional unit of the smallest arteries, arterioles, capillaries and venules. In 1921 it was still thought that the blood circulation was the sole response to the pumping action of the heart. Even the classic work by Bayliss on the myogenic hypothesis (later referred to as "blood flow autoregulation") initially received little attention. More strikingly, even the findings of August Krogh, for which he received the Nobel Prize in Medicine in 1920 (for his discovery of the mechanisms of capillary motor regulation), were ignored. During an outstanding autoregulation symposium held in 1963 a broad consensus was reached on active and passive mechanisms, which is more or less valid till today. The mechanisms of regulation of capillary blood flow are now largely understood, although not completely resolved. The development of video systems with recording capability and automated off-line recording of capillary erythrocyte velocities allowed the application of morphological and dynamic studies of cutaneous capillaries in humans. These reopened the field of physiological or pathophysiological questions again for many groups worldwide. Since 1955, many publications on "microcirculation (5423)" and "capillary microscopy (2195)" have been listed in pubmed.