{"title":"基因疗法的未来:基于基因组编辑疗法的体内和体外给药方法综述》。","authors":"Olga Volodina, Svetlana Smirnikhina","doi":"10.1007/s12033-024-01070-4","DOIUrl":null,"url":null,"abstract":"<p><p>The development of gene therapy based on genome editing has opened up new possibilities for the treatment of human genetic disorders. This field has developed rapidly over the past few decades, some genome editing-based therapies are already in phase 3 clinical trials. However, there are several challenges to be addressed before widespread adoption of gene editing therapy becomes possible. The main obstacles in the development of such therapy are safety and efficiency, so one of the biggest issues is the delivery of genetic constructs to patient cells. Approaches in genetic cargo delivery divide into ex vivo and in vivo, which are suitable for different cases. The ex vivo approach is mainly used to edit blood cells, improve cancer therapy, and treat infectious diseases. To edit cells in organs researches choose in vivo approach. For each approach, there is a fairly large set of methods, but, unfortunately, these methods are not universal in their effectiveness and safety. The focus of this article is to discuss the current status of in vivo and ex vivo delivery methods used in genome editing-based therapy. We will discuss the main methods employed in these approaches and their applications in current gene editing treatments under development.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"425-437"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Future of Gene Therapy: A Review of In Vivo and Ex Vivo Delivery Methods for Genome Editing-Based Therapies.\",\"authors\":\"Olga Volodina, Svetlana Smirnikhina\",\"doi\":\"10.1007/s12033-024-01070-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of gene therapy based on genome editing has opened up new possibilities for the treatment of human genetic disorders. This field has developed rapidly over the past few decades, some genome editing-based therapies are already in phase 3 clinical trials. However, there are several challenges to be addressed before widespread adoption of gene editing therapy becomes possible. The main obstacles in the development of such therapy are safety and efficiency, so one of the biggest issues is the delivery of genetic constructs to patient cells. Approaches in genetic cargo delivery divide into ex vivo and in vivo, which are suitable for different cases. The ex vivo approach is mainly used to edit blood cells, improve cancer therapy, and treat infectious diseases. To edit cells in organs researches choose in vivo approach. For each approach, there is a fairly large set of methods, but, unfortunately, these methods are not universal in their effectiveness and safety. The focus of this article is to discuss the current status of in vivo and ex vivo delivery methods used in genome editing-based therapy. We will discuss the main methods employed in these approaches and their applications in current gene editing treatments under development.</p>\",\"PeriodicalId\":18865,\"journal\":{\"name\":\"Molecular Biotechnology\",\"volume\":\" \",\"pages\":\"425-437\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12033-024-01070-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01070-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Future of Gene Therapy: A Review of In Vivo and Ex Vivo Delivery Methods for Genome Editing-Based Therapies.
The development of gene therapy based on genome editing has opened up new possibilities for the treatment of human genetic disorders. This field has developed rapidly over the past few decades, some genome editing-based therapies are already in phase 3 clinical trials. However, there are several challenges to be addressed before widespread adoption of gene editing therapy becomes possible. The main obstacles in the development of such therapy are safety and efficiency, so one of the biggest issues is the delivery of genetic constructs to patient cells. Approaches in genetic cargo delivery divide into ex vivo and in vivo, which are suitable for different cases. The ex vivo approach is mainly used to edit blood cells, improve cancer therapy, and treat infectious diseases. To edit cells in organs researches choose in vivo approach. For each approach, there is a fairly large set of methods, but, unfortunately, these methods are not universal in their effectiveness and safety. The focus of this article is to discuss the current status of in vivo and ex vivo delivery methods used in genome editing-based therapy. We will discuss the main methods employed in these approaches and their applications in current gene editing treatments under development.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.