使用 Panther Fusion 系统自动分子检测蚊子池中的西尼罗河病毒。

IF 2.2 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS
Kajal M. Patel, Pushker Raj
{"title":"使用 Panther Fusion 系统自动分子检测蚊子池中的西尼罗河病毒。","authors":"Kajal M. Patel,&nbsp;Pushker Raj","doi":"10.1016/j.jviromet.2024.114893","DOIUrl":null,"url":null,"abstract":"<div><p>West Nile Virus (WNV) is an arthropod-borne virus that is spread through mosquito vectors. WNV emerged in the US in 1999 and has since become endemic in the US, causing the most domestically acquired arboviral disease in the country. Mosquito surveillance for WNV is useful to monitor arboviral disease burden over time and across different locations. RT-qPCR is the preferred method for WNV surveillance, but these methods are labor-intensive. The Panther Fusion System has an Open Access feature that allows for laboratory-developed tests (LDTs) to run on a fully automated system for nucleic acid extraction, RT-qPCR, and result generation. This study demonstrates the successful optimization of a WNV multiplex LDT (assay targets: ENV and NS1 genes) for high-throughput environmental surveillance testing of mosquito pool homogenates on the Panther Fusion System. Analytical sensitivity of the assay was 186 and 744 copies/PCR reaction for the ENV and NS1 targets, respectively. To assess the performance of this assay, a total of 80 mosquito pools were tested, including 60 previously tested pools and 20 spiked negative mosquito pools. Among the 60 previously tested specimens, the Panther Fusion WNV LDT demonstrated 100% positive and negative agreement with the CDC West Nile RT-qPCR assay. The Panther Fusion WNV LDT also detected all 20 spiked specimens. The Panther Fusion WNV LDT assay was successfully developed and optimized for high throughput testing with similar performance to the previously used CDC West Nile RT-qPCR assay.</p></div>","PeriodicalId":17663,"journal":{"name":"Journal of virological methods","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated molecular detection of West Nile Virus in mosquito pools using the Panther Fusion system\",\"authors\":\"Kajal M. Patel,&nbsp;Pushker Raj\",\"doi\":\"10.1016/j.jviromet.2024.114893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>West Nile Virus (WNV) is an arthropod-borne virus that is spread through mosquito vectors. WNV emerged in the US in 1999 and has since become endemic in the US, causing the most domestically acquired arboviral disease in the country. Mosquito surveillance for WNV is useful to monitor arboviral disease burden over time and across different locations. RT-qPCR is the preferred method for WNV surveillance, but these methods are labor-intensive. The Panther Fusion System has an Open Access feature that allows for laboratory-developed tests (LDTs) to run on a fully automated system for nucleic acid extraction, RT-qPCR, and result generation. This study demonstrates the successful optimization of a WNV multiplex LDT (assay targets: ENV and NS1 genes) for high-throughput environmental surveillance testing of mosquito pool homogenates on the Panther Fusion System. Analytical sensitivity of the assay was 186 and 744 copies/PCR reaction for the ENV and NS1 targets, respectively. To assess the performance of this assay, a total of 80 mosquito pools were tested, including 60 previously tested pools and 20 spiked negative mosquito pools. Among the 60 previously tested specimens, the Panther Fusion WNV LDT demonstrated 100% positive and negative agreement with the CDC West Nile RT-qPCR assay. The Panther Fusion WNV LDT also detected all 20 spiked specimens. The Panther Fusion WNV LDT assay was successfully developed and optimized for high throughput testing with similar performance to the previously used CDC West Nile RT-qPCR assay.</p></div>\",\"PeriodicalId\":17663,\"journal\":{\"name\":\"Journal of virological methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of virological methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016609342400017X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of virological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016609342400017X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

西尼罗河病毒(WNV)是一种通过蚊子媒介传播的节肢动物病毒。西尼罗河病毒于 1999 年在美国出现,此后成为美国的地方病,是美国国内感染最多的虫媒病毒疾病。对 WNV 进行蚊虫监测有助于监测不同时期和不同地区的虫媒病毒疾病负担。RT-qPCR 是监测 WNV 的首选方法,但这些方法需要大量人力。Panther Fusion 系统具有开放存取功能,允许实验室开发的测试 (LDT) 在全自动系统上运行,进行核酸提取、RT-qPCR 和结果生成。本研究展示了在 Panther Fusion 系统上成功优化 WNV 多路 LDT(检测目标:ENV 和 NS1 基因)的过程,用于对蚊子池匀浆进行高通量环境监测检测。对 ENV 和 NS1 目标基因的分析灵敏度分别为 186 和 744 个拷贝/PCR 反应。为评估该检测方法的性能,共检测了 80 个蚊子池,其中包括 60 个以前检测过的蚊子池和 20 个添加了标记的阴性蚊子池。在 60 份先前检测过的标本中,Panther Fusion WNV LDT 与疾控中心西尼罗河病毒 RT-qPCR 检测法的阳性和阴性一致率均为 100%。Panther Fusion WNV LDT 还检测了所有 20 份加标样本。Panther Fusion WNV LDT 检测试剂盒已成功开发并优化用于高通量检测,其性能与之前使用的疾控中心西尼罗河病毒 RT-qPCR 检测试剂盒类似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated molecular detection of West Nile Virus in mosquito pools using the Panther Fusion system

West Nile Virus (WNV) is an arthropod-borne virus that is spread through mosquito vectors. WNV emerged in the US in 1999 and has since become endemic in the US, causing the most domestically acquired arboviral disease in the country. Mosquito surveillance for WNV is useful to monitor arboviral disease burden over time and across different locations. RT-qPCR is the preferred method for WNV surveillance, but these methods are labor-intensive. The Panther Fusion System has an Open Access feature that allows for laboratory-developed tests (LDTs) to run on a fully automated system for nucleic acid extraction, RT-qPCR, and result generation. This study demonstrates the successful optimization of a WNV multiplex LDT (assay targets: ENV and NS1 genes) for high-throughput environmental surveillance testing of mosquito pool homogenates on the Panther Fusion System. Analytical sensitivity of the assay was 186 and 744 copies/PCR reaction for the ENV and NS1 targets, respectively. To assess the performance of this assay, a total of 80 mosquito pools were tested, including 60 previously tested pools and 20 spiked negative mosquito pools. Among the 60 previously tested specimens, the Panther Fusion WNV LDT demonstrated 100% positive and negative agreement with the CDC West Nile RT-qPCR assay. The Panther Fusion WNV LDT also detected all 20 spiked specimens. The Panther Fusion WNV LDT assay was successfully developed and optimized for high throughput testing with similar performance to the previously used CDC West Nile RT-qPCR assay.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
209
审稿时长
41 days
期刊介绍: The Journal of Virological Methods focuses on original, high quality research papers that describe novel and comprehensively tested methods which enhance human, animal, plant, bacterial or environmental virology and prions research and discovery. The methods may include, but not limited to, the study of: Viral components and morphology- Virus isolation, propagation and development of viral vectors- Viral pathogenesis, oncogenesis, vaccines and antivirals- Virus replication, host-pathogen interactions and responses- Virus transmission, prevention, control and treatment- Viral metagenomics and virome- Virus ecology, adaption and evolution- Applied virology such as nanotechnology- Viral diagnosis with novelty and comprehensive evaluation. We seek articles, systematic reviews, meta-analyses and laboratory protocols that include comprehensive technical details with statistical confirmations that provide validations against current best practice, international standards or quality assurance programs and which advance knowledge in virology leading to improved medical, veterinary or agricultural practices and management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信