腺相关病毒的先进生物制造和评估。

IF 5.7 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Kai Chen, Seulhee Kim, Siying Yang, Tanvi Varadkar, Zhuoxin Zora Zhou, Jiashuai Zhang, Lufang Zhou, Xiaoguang Margaret Liu
{"title":"腺相关病毒的先进生物制造和评估。","authors":"Kai Chen, Seulhee Kim, Siying Yang, Tanvi Varadkar, Zhuoxin Zora Zhou, Jiashuai Zhang, Lufang Zhou, Xiaoguang Margaret Liu","doi":"10.1186/s13036-024-00409-4","DOIUrl":null,"url":null,"abstract":"<p><p>Recombinant adeno-associated virus (rAAV) has been developed as a safe and effective gene delivery vehicle to treat rare genetic diseases. This study aimed to establish a novel biomanufacturing process to achieve high production and purification of various AAV serotypes (AAV2, 5, DJ, DJ8). First, a robust suspensive production process was developed and optimized using Gibco Viral Production Cell 2.0 in 30-60 mL shaker flask cultures by evaluating host cells, cell density at the time of transfection and plasmid amount, adapted to 60-100 mL spinner flask production, and scaled up to 1.2-2.0-L stirred-tank bioreactor production at 37 °C, pH 7.0, 210 rpm and DO 40%. The optimal process generated AAV titer of 7.52-8.14 × 10<sup>10</sup> vg/mL. Second, a new AAV purification using liquid chromatography was developed and optimized to reach recovery rate of 85-95% of all four serotypes. Post-purification desalting and concentration procedures were also investigated. Then the generated AAVs were evaluated in vitro using Western blotting, transmission electron microscope, confocal microscope and bioluminescence detection. Finally, the in vivo infection and functional gene expression of AAV were confirmed in tumor xenografted mouse model. In conclusion, this study reported a robust, scalable, and universal biomanufacturing platform of AAV production, clarification and purification.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"18 1","pages":"15"},"PeriodicalIF":5.7000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10868095/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advanced biomanufacturing and evaluation of adeno-associated virus.\",\"authors\":\"Kai Chen, Seulhee Kim, Siying Yang, Tanvi Varadkar, Zhuoxin Zora Zhou, Jiashuai Zhang, Lufang Zhou, Xiaoguang Margaret Liu\",\"doi\":\"10.1186/s13036-024-00409-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recombinant adeno-associated virus (rAAV) has been developed as a safe and effective gene delivery vehicle to treat rare genetic diseases. This study aimed to establish a novel biomanufacturing process to achieve high production and purification of various AAV serotypes (AAV2, 5, DJ, DJ8). First, a robust suspensive production process was developed and optimized using Gibco Viral Production Cell 2.0 in 30-60 mL shaker flask cultures by evaluating host cells, cell density at the time of transfection and plasmid amount, adapted to 60-100 mL spinner flask production, and scaled up to 1.2-2.0-L stirred-tank bioreactor production at 37 °C, pH 7.0, 210 rpm and DO 40%. The optimal process generated AAV titer of 7.52-8.14 × 10<sup>10</sup> vg/mL. Second, a new AAV purification using liquid chromatography was developed and optimized to reach recovery rate of 85-95% of all four serotypes. Post-purification desalting and concentration procedures were also investigated. Then the generated AAVs were evaluated in vitro using Western blotting, transmission electron microscope, confocal microscope and bioluminescence detection. Finally, the in vivo infection and functional gene expression of AAV were confirmed in tumor xenografted mouse model. In conclusion, this study reported a robust, scalable, and universal biomanufacturing platform of AAV production, clarification and purification.</p>\",\"PeriodicalId\":15053,\"journal\":{\"name\":\"Journal of Biological Engineering\",\"volume\":\"18 1\",\"pages\":\"15\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10868095/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Engineering\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13036-024-00409-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-024-00409-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

重组腺相关病毒(rAAV)已被开发为治疗罕见遗传病的一种安全有效的基因递送载体。本研究旨在建立一种新型生物制造工艺,以实现各种 AAV 血清型(AAV2、5、DJ、DJ8)的高产量和高纯度。首先,通过评估宿主细胞、转染时的细胞密度和质粒数量,在 30-60 mL 摇瓶培养中使用 Gibco Viral Production Cell 2.0 开发并优化了稳健的悬浮生产工艺,使其适用于 60-100 mL 旋转瓶生产,并在 37 °C、pH 7.0、210 rpm 和 DO 40% 的条件下扩大到 1.2-2.0-L 搅拌罐生物反应器生产。最佳工艺产生的 AAV 滴度为 7.52-8.14 × 1010 vg/mL。其次,开发并优化了使用液相色谱法纯化 AAV 的新方法,使所有四种血清型的回收率达到 85-95%。此外,还研究了纯化后的脱盐和浓缩程序。然后,使用 Western 印迹、透射电子显微镜、共聚焦显微镜和生物发光检测对生成的 AAV 进行体外评估。最后,在肿瘤异种移植小鼠模型中证实了 AAV 的体内感染和功能基因表达。总之,本研究报告了一种稳健、可扩展和通用的 AAV 生产、澄清和纯化生物制造平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced biomanufacturing and evaluation of adeno-associated virus.

Recombinant adeno-associated virus (rAAV) has been developed as a safe and effective gene delivery vehicle to treat rare genetic diseases. This study aimed to establish a novel biomanufacturing process to achieve high production and purification of various AAV serotypes (AAV2, 5, DJ, DJ8). First, a robust suspensive production process was developed and optimized using Gibco Viral Production Cell 2.0 in 30-60 mL shaker flask cultures by evaluating host cells, cell density at the time of transfection and plasmid amount, adapted to 60-100 mL spinner flask production, and scaled up to 1.2-2.0-L stirred-tank bioreactor production at 37 °C, pH 7.0, 210 rpm and DO 40%. The optimal process generated AAV titer of 7.52-8.14 × 1010 vg/mL. Second, a new AAV purification using liquid chromatography was developed and optimized to reach recovery rate of 85-95% of all four serotypes. Post-purification desalting and concentration procedures were also investigated. Then the generated AAVs were evaluated in vitro using Western blotting, transmission electron microscope, confocal microscope and bioluminescence detection. Finally, the in vivo infection and functional gene expression of AAV were confirmed in tumor xenografted mouse model. In conclusion, this study reported a robust, scalable, and universal biomanufacturing platform of AAV production, clarification and purification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Engineering
Journal of Biological Engineering BIOCHEMICAL RESEARCH METHODS-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
7.10
自引率
1.80%
发文量
32
审稿时长
17 weeks
期刊介绍: Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to: Synthetic biology and cellular design Biomolecular, cellular and tissue engineering Bioproduction and metabolic engineering Biosensors Ecological and environmental engineering Biological engineering education and the biodesign process As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels. Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信