{"title":"作为分枝杆菌多药外排泵 Rv1258c 潜在抑制剂的植物化合物:硅学方法。","authors":"Santasree Sarma Biswas, Jayanti Datta Roy","doi":"10.1186/s13568-024-01673-9","DOIUrl":null,"url":null,"abstract":"<p><p>The number of infections and deaths caused by multidrug resistant (MDR) tuberculosis is increasing globally. One of the efflux pumps, that makes Mycobacterium tuberculosis resistant to a number of antibiotics and results in unfavourable treatment results is Tap or Rv1258c. In our study, we tried to utilize a rational drug design technique using in silico approach to look for an efficient and secure efflux pump inhibitor (EPI) against Rv1258c. The structure of Rv1258c was built using the homology modeling tool MODELLER 9.24. 210 phytocompounds were used for blind and site-specific ligand docking against the modelled structure of Rv1258c using AutoDock Vina software. The best docked plant compounds were further analysed for druglikeness and toxicity. In addition to having excellent docking scores, two plant compounds-ellagic acid and baicalein-also exhibited highly desirable drug-like qualities. These substances outperform more well-known EPIs like piperine and verapamil in terms of effectiveness. This data shows that these two compounds might be further investigated for their potential as Rv1258c inhibitors.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"25"},"PeriodicalIF":3.5000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10869325/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phytocompounds as potential inhibitors of mycobacterial multidrug efflux pump Rv1258c: an in silico approach.\",\"authors\":\"Santasree Sarma Biswas, Jayanti Datta Roy\",\"doi\":\"10.1186/s13568-024-01673-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The number of infections and deaths caused by multidrug resistant (MDR) tuberculosis is increasing globally. One of the efflux pumps, that makes Mycobacterium tuberculosis resistant to a number of antibiotics and results in unfavourable treatment results is Tap or Rv1258c. In our study, we tried to utilize a rational drug design technique using in silico approach to look for an efficient and secure efflux pump inhibitor (EPI) against Rv1258c. The structure of Rv1258c was built using the homology modeling tool MODELLER 9.24. 210 phytocompounds were used for blind and site-specific ligand docking against the modelled structure of Rv1258c using AutoDock Vina software. The best docked plant compounds were further analysed for druglikeness and toxicity. In addition to having excellent docking scores, two plant compounds-ellagic acid and baicalein-also exhibited highly desirable drug-like qualities. These substances outperform more well-known EPIs like piperine and verapamil in terms of effectiveness. This data shows that these two compounds might be further investigated for their potential as Rv1258c inhibitors.</p>\",\"PeriodicalId\":7537,\"journal\":{\"name\":\"AMB Express\",\"volume\":\"14 1\",\"pages\":\"25\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10869325/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMB Express\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13568-024-01673-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-024-01673-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Phytocompounds as potential inhibitors of mycobacterial multidrug efflux pump Rv1258c: an in silico approach.
The number of infections and deaths caused by multidrug resistant (MDR) tuberculosis is increasing globally. One of the efflux pumps, that makes Mycobacterium tuberculosis resistant to a number of antibiotics and results in unfavourable treatment results is Tap or Rv1258c. In our study, we tried to utilize a rational drug design technique using in silico approach to look for an efficient and secure efflux pump inhibitor (EPI) against Rv1258c. The structure of Rv1258c was built using the homology modeling tool MODELLER 9.24. 210 phytocompounds were used for blind and site-specific ligand docking against the modelled structure of Rv1258c using AutoDock Vina software. The best docked plant compounds were further analysed for druglikeness and toxicity. In addition to having excellent docking scores, two plant compounds-ellagic acid and baicalein-also exhibited highly desirable drug-like qualities. These substances outperform more well-known EPIs like piperine and verapamil in terms of effectiveness. This data shows that these two compounds might be further investigated for their potential as Rv1258c inhibitors.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.