{"title":"通过累积危害指数识别邻里热点:社区合作的低成本传感器部署成果","authors":"Sakshi Jain, Rivkah Gardner-Frolick, Nika Martinussen, Dan Jackson, Amanda Giang, Naomi Zimmerman","doi":"10.1029/2023GH000935","DOIUrl":null,"url":null,"abstract":"<p>The Strathcona neighborhood in Vancouver is particularly vulnerable to environmental injustice due to its close proximity to the Port of Vancouver, and a high proportion of Indigenous and low-income households. Furthermore, local sources of air pollutants (e.g., roadways) can contribute to small-scale variations within communities. The aim of this study was to assess hyperlocal air quality patterns (intra-neighborhood variability) and compare them to average Vancouver concentrations (inter-neighborhood variability) to identify possible disparities in air pollution exposure for the Strathcona community. Between April and August 2022, 11 low-cost sensors (LCS) were deployed within the neighborhood to measure PM<sub>2.5</sub>, NO<sub>2</sub>, and O<sub>3</sub> concentrations. The collected 15-min concentrations were down-averaged to daily concentrations and compared to greater Vancouver region concentrations to quantify the exposures faced by the community relative to the rest of the region. Concentrations were also estimated at every 25 m grid within the neighborhood to quantify the distribution of air pollution within the community. Using population information from census data, cumulative hazard indices (CHIs) were computed for every dissemination block. We found that although PM<sub>2.5</sub> concentrations in the neighborhood were lower than regional Vancouver averages, daily NO<sub>2</sub> concentrations and summer O<sub>3</sub> concentrations were consistently higher. Additionally, although CHIs varied daily, we found that CHIs were consistently higher in areas with high commercial activity. As such, estimating CHI for dissemination blocks was useful in identifying hotspots and potential areas of concern within the neighborhood. This information can collectively assist the community in their advocacy efforts.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"8 2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GH000935","citationCount":"0","resultStr":"{\"title\":\"Identification of Neighborhood Hotspots via the Cumulative Hazard Index: Results From a Community-Partnered Low-Cost Sensor Deployment\",\"authors\":\"Sakshi Jain, Rivkah Gardner-Frolick, Nika Martinussen, Dan Jackson, Amanda Giang, Naomi Zimmerman\",\"doi\":\"10.1029/2023GH000935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Strathcona neighborhood in Vancouver is particularly vulnerable to environmental injustice due to its close proximity to the Port of Vancouver, and a high proportion of Indigenous and low-income households. Furthermore, local sources of air pollutants (e.g., roadways) can contribute to small-scale variations within communities. The aim of this study was to assess hyperlocal air quality patterns (intra-neighborhood variability) and compare them to average Vancouver concentrations (inter-neighborhood variability) to identify possible disparities in air pollution exposure for the Strathcona community. Between April and August 2022, 11 low-cost sensors (LCS) were deployed within the neighborhood to measure PM<sub>2.5</sub>, NO<sub>2</sub>, and O<sub>3</sub> concentrations. The collected 15-min concentrations were down-averaged to daily concentrations and compared to greater Vancouver region concentrations to quantify the exposures faced by the community relative to the rest of the region. Concentrations were also estimated at every 25 m grid within the neighborhood to quantify the distribution of air pollution within the community. Using population information from census data, cumulative hazard indices (CHIs) were computed for every dissemination block. We found that although PM<sub>2.5</sub> concentrations in the neighborhood were lower than regional Vancouver averages, daily NO<sub>2</sub> concentrations and summer O<sub>3</sub> concentrations were consistently higher. Additionally, although CHIs varied daily, we found that CHIs were consistently higher in areas with high commercial activity. As such, estimating CHI for dissemination blocks was useful in identifying hotspots and potential areas of concern within the neighborhood. This information can collectively assist the community in their advocacy efforts.</p>\",\"PeriodicalId\":48618,\"journal\":{\"name\":\"Geohealth\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GH000935\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geohealth\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023GH000935\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohealth","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GH000935","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Identification of Neighborhood Hotspots via the Cumulative Hazard Index: Results From a Community-Partnered Low-Cost Sensor Deployment
The Strathcona neighborhood in Vancouver is particularly vulnerable to environmental injustice due to its close proximity to the Port of Vancouver, and a high proportion of Indigenous and low-income households. Furthermore, local sources of air pollutants (e.g., roadways) can contribute to small-scale variations within communities. The aim of this study was to assess hyperlocal air quality patterns (intra-neighborhood variability) and compare them to average Vancouver concentrations (inter-neighborhood variability) to identify possible disparities in air pollution exposure for the Strathcona community. Between April and August 2022, 11 low-cost sensors (LCS) were deployed within the neighborhood to measure PM2.5, NO2, and O3 concentrations. The collected 15-min concentrations were down-averaged to daily concentrations and compared to greater Vancouver region concentrations to quantify the exposures faced by the community relative to the rest of the region. Concentrations were also estimated at every 25 m grid within the neighborhood to quantify the distribution of air pollution within the community. Using population information from census data, cumulative hazard indices (CHIs) were computed for every dissemination block. We found that although PM2.5 concentrations in the neighborhood were lower than regional Vancouver averages, daily NO2 concentrations and summer O3 concentrations were consistently higher. Additionally, although CHIs varied daily, we found that CHIs were consistently higher in areas with high commercial activity. As such, estimating CHI for dissemination blocks was useful in identifying hotspots and potential areas of concern within the neighborhood. This information can collectively assist the community in their advocacy efforts.
期刊介绍:
GeoHealth will publish original research, reviews, policy discussions, and commentaries that cover the growing science on the interface among the Earth, atmospheric, oceans and environmental sciences, ecology, and the agricultural and health sciences. The journal will cover a wide variety of global and local issues including the impacts of climate change on human, agricultural, and ecosystem health, air and water pollution, environmental persistence of herbicides and pesticides, radiation and health, geomedicine, and the health effects of disasters. Many of these topics and others are of critical importance in the developing world and all require bringing together leading research across multiple disciplines.