利用保护隐私的边缘计算分布式摄像机网络进行室内群体识别和定位

Chaitra Hegde;Yashar Kiarashi;Amy D. Rodriguez;Allan I. Levey;Matthew Doiron;Hyeokhyen Kwon;Gari D. Clifford
{"title":"利用保护隐私的边缘计算分布式摄像机网络进行室内群体识别和定位","authors":"Chaitra Hegde;Yashar Kiarashi;Amy D. Rodriguez;Allan I. Levey;Matthew Doiron;Hyeokhyen Kwon;Gari D. Clifford","doi":"10.1109/JISPIN.2024.3354248","DOIUrl":null,"url":null,"abstract":"Social interaction behaviors change as a result of both physical and psychiatric problems, and it is important to identify subtle changes in group activity engagements for monitoring the mental health of patients in clinics. This work proposes a system to identify when and where group formations occur in an approximately 1700 \n<inline-formula><tex-math>$ \\text{m}^{2}$</tex-math></inline-formula>\n therapeutic built environment using a distributed edge-computing camera network. The proposed method can localize group formations when provided with noisy positions and orientations of individuals, estimated from sparsely distributed multiview cameras, which run a lightweight multiperson 2-D pose detection model. Our group identification method demonstrated an F1 score of up to 90% with a mean absolute error of 1.25 m for group localization on our benchmark dataset. The dataset consisted of seven subjects walking, sitting, and conversing for 35 min in groups of various sizes ranging from 2 to 7 subjects. The proposed system is low-cost and scalable to any ordinary building to transform the indoor space into a smart environment using edge computing systems. We expect the proposed system to enhance existing therapeutic units for passively monitoring the social behaviors of patients when implementing real-time interventions.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"2 ","pages":"51-60"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10400779","citationCount":"0","resultStr":"{\"title\":\"Indoor Group Identification and Localization Using Privacy-Preserving Edge Computing Distributed Camera Network\",\"authors\":\"Chaitra Hegde;Yashar Kiarashi;Amy D. Rodriguez;Allan I. Levey;Matthew Doiron;Hyeokhyen Kwon;Gari D. Clifford\",\"doi\":\"10.1109/JISPIN.2024.3354248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social interaction behaviors change as a result of both physical and psychiatric problems, and it is important to identify subtle changes in group activity engagements for monitoring the mental health of patients in clinics. This work proposes a system to identify when and where group formations occur in an approximately 1700 \\n<inline-formula><tex-math>$ \\\\text{m}^{2}$</tex-math></inline-formula>\\n therapeutic built environment using a distributed edge-computing camera network. The proposed method can localize group formations when provided with noisy positions and orientations of individuals, estimated from sparsely distributed multiview cameras, which run a lightweight multiperson 2-D pose detection model. Our group identification method demonstrated an F1 score of up to 90% with a mean absolute error of 1.25 m for group localization on our benchmark dataset. The dataset consisted of seven subjects walking, sitting, and conversing for 35 min in groups of various sizes ranging from 2 to 7 subjects. The proposed system is low-cost and scalable to any ordinary building to transform the indoor space into a smart environment using edge computing systems. We expect the proposed system to enhance existing therapeutic units for passively monitoring the social behaviors of patients when implementing real-time interventions.\",\"PeriodicalId\":100621,\"journal\":{\"name\":\"IEEE Journal of Indoor and Seamless Positioning and Navigation\",\"volume\":\"2 \",\"pages\":\"51-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10400779\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Indoor and Seamless Positioning and Navigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10400779/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Indoor and Seamless Positioning and Navigation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10400779/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社交互动行为会因身体和精神问题而改变,因此识别群体活动参与的细微变化对于监测诊所中患者的心理健康非常重要。本研究提出了一种系统,利用分布式边缘计算摄像机网络,在约 1700 \text{m}^{2}$ 的治疗建筑环境中识别群体形成的时间和地点。所提出的方法可以在获得由稀疏分布的多视角摄像头估算出的有噪声的个体位置和方向的情况下定位群体编队,该摄像头运行了一个轻量级的多人二维姿态检测模型。我们的群体识别方法在基准数据集上的群体定位F1得分高达90%,平均绝对误差为1.25米。该数据集由 7 名受试者组成,他们在 2 到 7 名受试者的不同规模的群体中行走、坐着和交谈了 35 分钟。建议的系统成本低,可扩展到任何普通建筑,利用边缘计算系统将室内空间转变为智能环境。我们希望所提出的系统能增强现有的治疗设备,以便在实施实时干预时被动监测患者的社交行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indoor Group Identification and Localization Using Privacy-Preserving Edge Computing Distributed Camera Network
Social interaction behaviors change as a result of both physical and psychiatric problems, and it is important to identify subtle changes in group activity engagements for monitoring the mental health of patients in clinics. This work proposes a system to identify when and where group formations occur in an approximately 1700  $ \text{m}^{2}$ therapeutic built environment using a distributed edge-computing camera network. The proposed method can localize group formations when provided with noisy positions and orientations of individuals, estimated from sparsely distributed multiview cameras, which run a lightweight multiperson 2-D pose detection model. Our group identification method demonstrated an F1 score of up to 90% with a mean absolute error of 1.25 m for group localization on our benchmark dataset. The dataset consisted of seven subjects walking, sitting, and conversing for 35 min in groups of various sizes ranging from 2 to 7 subjects. The proposed system is low-cost and scalable to any ordinary building to transform the indoor space into a smart environment using edge computing systems. We expect the proposed system to enhance existing therapeutic units for passively monitoring the social behaviors of patients when implementing real-time interventions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信