基于亚甲基蓝比色法的图像处理技术反渗透膜污垢检测新方案。

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Hiren Raval, Ritika Sharma, Ashish Srivastava
{"title":"基于亚甲基蓝比色法的图像处理技术反渗透膜污垢检测新方案。","authors":"Hiren Raval, Ritika Sharma, Ashish Srivastava","doi":"10.2166/wst.2023.425","DOIUrl":null,"url":null,"abstract":"<p><p>In the current study, a novel methylene blue (MB)-based colorimetric method for a quick, inexpensive, and facile approach for the determination of fouling intensity of reverse osmosis (RO) membrane has been reported. This technique is based on the interaction of MB with the organic foulants and shows the corresponding change in the colour intensity depending on the severity of fouling. The organic foulants, such as albumin, sodium alginate, and carboxymethyl cellulose (CMC), were chosen as model foulants, and the membranes were subjected to foul under extreme fouling conditions. The fouled membranes underwent an MB treatment followed by image-processing analyses. The severity of surface fouling of membranes was evaluated in terms of fouling intensity and correlated with the corresponding decline of permeate flux. The maximum fouling intensity of the albumin, sodium alginate, and CMC sodium were found to be 8.83, 23.38, and 9.19%, respectively, for the definite concentration of foulants. The physico-chemical interactions of the given foulants and MB were confirmed by changes in zeta potentials and increased sizes of the foulant by the dynamic light scattering technique. The surface fouling over the membrane surface was confirmed by the characterization of membranes.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2023_425/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel protocol for fouling detection of reverse osmosis membrane based on methylene blue colorimetric method by image processing technique.\",\"authors\":\"Hiren Raval, Ritika Sharma, Ashish Srivastava\",\"doi\":\"10.2166/wst.2023.425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the current study, a novel methylene blue (MB)-based colorimetric method for a quick, inexpensive, and facile approach for the determination of fouling intensity of reverse osmosis (RO) membrane has been reported. This technique is based on the interaction of MB with the organic foulants and shows the corresponding change in the colour intensity depending on the severity of fouling. The organic foulants, such as albumin, sodium alginate, and carboxymethyl cellulose (CMC), were chosen as model foulants, and the membranes were subjected to foul under extreme fouling conditions. The fouled membranes underwent an MB treatment followed by image-processing analyses. The severity of surface fouling of membranes was evaluated in terms of fouling intensity and correlated with the corresponding decline of permeate flux. The maximum fouling intensity of the albumin, sodium alginate, and CMC sodium were found to be 8.83, 23.38, and 9.19%, respectively, for the definite concentration of foulants. The physico-chemical interactions of the given foulants and MB were confirmed by changes in zeta potentials and increased sizes of the foulant by the dynamic light scattering technique. The surface fouling over the membrane surface was confirmed by the characterization of membranes.</p>\",\"PeriodicalId\":23653,\"journal\":{\"name\":\"Water Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2023_425/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2023.425\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2023.425","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

在当前的研究中,报告了一种基于亚甲基蓝(MB)的新型比色法,该方法快速、廉价、简便,可用于确定反渗透膜(RO)的污垢强度。该技术基于甲基溴与有机污垢剂的相互作用,并根据污垢的严重程度显示相应的颜色强度变化。选择白蛋白、海藻酸钠和羧甲基纤维素(CMC)等有机污垢剂作为模型污垢剂,并在极端污垢条件下对膜进行污垢处理。污损膜经过 MB 处理,然后进行图像处理分析。膜表面污垢的严重程度以污垢强度来评估,并与渗透通量的相应下降相关联。在污垢物浓度一定的情况下,白蛋白、海藻酸钠和 CMC 钠的最大污垢强度分别为 8.83%、23.38% 和 9.19%。通过动态光散射技术,zeta 电位的变化和污物尺寸的增大证实了所给污物和甲基溴之间的物理化学相互作用。膜表面的污垢通过膜的特征得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel protocol for fouling detection of reverse osmosis membrane based on methylene blue colorimetric method by image processing technique.

In the current study, a novel methylene blue (MB)-based colorimetric method for a quick, inexpensive, and facile approach for the determination of fouling intensity of reverse osmosis (RO) membrane has been reported. This technique is based on the interaction of MB with the organic foulants and shows the corresponding change in the colour intensity depending on the severity of fouling. The organic foulants, such as albumin, sodium alginate, and carboxymethyl cellulose (CMC), were chosen as model foulants, and the membranes were subjected to foul under extreme fouling conditions. The fouled membranes underwent an MB treatment followed by image-processing analyses. The severity of surface fouling of membranes was evaluated in terms of fouling intensity and correlated with the corresponding decline of permeate flux. The maximum fouling intensity of the albumin, sodium alginate, and CMC sodium were found to be 8.83, 23.38, and 9.19%, respectively, for the definite concentration of foulants. The physico-chemical interactions of the given foulants and MB were confirmed by changes in zeta potentials and increased sizes of the foulant by the dynamic light scattering technique. The surface fouling over the membrane surface was confirmed by the characterization of membranes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信