Bhivraj Suthar , Mohammad I. Awad , Lakmal Seneviratne , Yahya Zweiri , Irfan Hussain
{"title":"利用带模块化被动回转关节的扭绳致动器设计机器人手指,以实现高抓取力:应用于可穿戴第六指","authors":"Bhivraj Suthar , Mohammad I. Awad , Lakmal Seneviratne , Yahya Zweiri , Irfan Hussain","doi":"10.1016/j.mechatronics.2024.103157","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a new type of robotic finger is introduced that uses a twisted string actuator (TSA) and modular passive return rotational (PPR) joints. The design is intended to be simple, compact, lightweight, and energy-efficient while producing high grasping force with a relatively small motor. The PPR joints are based on the beam-buckling principle and are designed to match the non-linear TSA force profile, resulting in high grasping force throughout the finger’s full flexion motion and passive finger extension. To evaluate the performance of the robotic finger, we fabricated a prototype and conducted experiments to assess its object grasping cycle, passive finger extension, grasping force, stable grasping condition, shape adaptability, and energy consumption. The finger weighs 170 grams and achieved a high force throughout the flexion motion, producing a maximum grasping force of 43.3 N at full flexion using a stall torque of 32 mNm. The modularity of the PPR joint allows for scalability and adaptability to handle different objects. We also demonstrated the finger’s potential as a wearable sixth robotic finger (SRF), evaluating its object grasping competency, shape adaptability, and wearability. The finger was able to grasp various objects with a maximum payload of 1.0 kg and a hanging payload of up to 5 kg. Overall, the proposed robotic finger has the potential to be used as an SRF to compensate for arm disorders’ grasping capability.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"99 ","pages":"Article 103157"},"PeriodicalIF":3.1000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of robotic finger using twisted string actuator with modular passive return rotational joints to achieve high grasping force: Application to wearable sixth finger\",\"authors\":\"Bhivraj Suthar , Mohammad I. Awad , Lakmal Seneviratne , Yahya Zweiri , Irfan Hussain\",\"doi\":\"10.1016/j.mechatronics.2024.103157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a new type of robotic finger is introduced that uses a twisted string actuator (TSA) and modular passive return rotational (PPR) joints. The design is intended to be simple, compact, lightweight, and energy-efficient while producing high grasping force with a relatively small motor. The PPR joints are based on the beam-buckling principle and are designed to match the non-linear TSA force profile, resulting in high grasping force throughout the finger’s full flexion motion and passive finger extension. To evaluate the performance of the robotic finger, we fabricated a prototype and conducted experiments to assess its object grasping cycle, passive finger extension, grasping force, stable grasping condition, shape adaptability, and energy consumption. The finger weighs 170 grams and achieved a high force throughout the flexion motion, producing a maximum grasping force of 43.3 N at full flexion using a stall torque of 32 mNm. The modularity of the PPR joint allows for scalability and adaptability to handle different objects. We also demonstrated the finger’s potential as a wearable sixth robotic finger (SRF), evaluating its object grasping competency, shape adaptability, and wearability. The finger was able to grasp various objects with a maximum payload of 1.0 kg and a hanging payload of up to 5 kg. Overall, the proposed robotic finger has the potential to be used as an SRF to compensate for arm disorders’ grasping capability.</p></div>\",\"PeriodicalId\":49842,\"journal\":{\"name\":\"Mechatronics\",\"volume\":\"99 \",\"pages\":\"Article 103157\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957415824000229\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824000229","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Design of robotic finger using twisted string actuator with modular passive return rotational joints to achieve high grasping force: Application to wearable sixth finger
In this paper, a new type of robotic finger is introduced that uses a twisted string actuator (TSA) and modular passive return rotational (PPR) joints. The design is intended to be simple, compact, lightweight, and energy-efficient while producing high grasping force with a relatively small motor. The PPR joints are based on the beam-buckling principle and are designed to match the non-linear TSA force profile, resulting in high grasping force throughout the finger’s full flexion motion and passive finger extension. To evaluate the performance of the robotic finger, we fabricated a prototype and conducted experiments to assess its object grasping cycle, passive finger extension, grasping force, stable grasping condition, shape adaptability, and energy consumption. The finger weighs 170 grams and achieved a high force throughout the flexion motion, producing a maximum grasping force of 43.3 N at full flexion using a stall torque of 32 mNm. The modularity of the PPR joint allows for scalability and adaptability to handle different objects. We also demonstrated the finger’s potential as a wearable sixth robotic finger (SRF), evaluating its object grasping competency, shape adaptability, and wearability. The finger was able to grasp various objects with a maximum payload of 1.0 kg and a hanging payload of up to 5 kg. Overall, the proposed robotic finger has the potential to be used as an SRF to compensate for arm disorders’ grasping capability.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.