Tomomi Okada , Miu Matsuno , Satoshi Matsumoto , Yuta Kawamura , Yoshihisa Iio , Tadashi Sato , Ayaka Tagami , Satoshi Hirahara , Shuutoku Kimura , Stephen Bannister , John Ristau , Martha K. Savage , Clifford H. Thurber , Richard H. Sibson
{"title":"从地震观测看 2016 年新西兰 M 7.8 Kaikōura 地震的复杂性:超压流体参与推断","authors":"Tomomi Okada , Miu Matsuno , Satoshi Matsumoto , Yuta Kawamura , Yoshihisa Iio , Tadashi Sato , Ayaka Tagami , Satoshi Hirahara , Shuutoku Kimura , Stephen Bannister , John Ristau , Martha K. Savage , Clifford H. Thurber , Richard H. Sibson","doi":"10.1016/j.pepi.2024.107155","DOIUrl":null,"url":null,"abstract":"<div><p>The M 7.8 Kaikoura earthquake occurred in the northern South Island of New Zealand on 3 Nov., 2016, involving the rupture of >20 faults. To understand the complexity of the Kaikoura earthquake, details of the fault geometry, seismic velocity distribution, and stress field are necessary. We have undertaken seismic tomography along the c. 200 km length of the rupture zone. Data from both 51 temporary stations and 22 permanent (GeoNet) stations were collected from March 2011 to December 2018.</p><p>The hypocenter of the Kaikoura earthquake and aftershocks near the Kekerengu fault locate along lineaments where seismic velocity changes laterally in the epicentral region. In the uppermost crust, lower velocities occur beneath the Emu Plain and Cape Campbell. A higher velocity region near Kaikoura may have acted as a barrier that prevented eastward rupture from the hypocenter and led to the complex fault distribution in this area. These complexities in the seismic velocity structure may relate to the multi-segment rupture character of the Kaikoura earthquake. Spatial correlations between rupture areas and high Vp/Vs suggest the involvement of overpressured fluid in the nucleation and propagation of rupture segments, which is also supported by the reactivation of unfavourably oriented strike-slip ruptures, many lying at c.70° to the regional maximum compressive stress trajectories.</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"348 ","pages":"Article 107155"},"PeriodicalIF":2.4000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S003192012400013X/pdfft?md5=c5526cb1a66b910c0d456f53dcf3d778&pid=1-s2.0-S003192012400013X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Complexity of the 2016 M 7.8 Kaikōura, New Zealand, earthquake from seismic observation: Inferences of overpressured fluid involvement\",\"authors\":\"Tomomi Okada , Miu Matsuno , Satoshi Matsumoto , Yuta Kawamura , Yoshihisa Iio , Tadashi Sato , Ayaka Tagami , Satoshi Hirahara , Shuutoku Kimura , Stephen Bannister , John Ristau , Martha K. Savage , Clifford H. Thurber , Richard H. Sibson\",\"doi\":\"10.1016/j.pepi.2024.107155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The M 7.8 Kaikoura earthquake occurred in the northern South Island of New Zealand on 3 Nov., 2016, involving the rupture of >20 faults. To understand the complexity of the Kaikoura earthquake, details of the fault geometry, seismic velocity distribution, and stress field are necessary. We have undertaken seismic tomography along the c. 200 km length of the rupture zone. Data from both 51 temporary stations and 22 permanent (GeoNet) stations were collected from March 2011 to December 2018.</p><p>The hypocenter of the Kaikoura earthquake and aftershocks near the Kekerengu fault locate along lineaments where seismic velocity changes laterally in the epicentral region. In the uppermost crust, lower velocities occur beneath the Emu Plain and Cape Campbell. A higher velocity region near Kaikoura may have acted as a barrier that prevented eastward rupture from the hypocenter and led to the complex fault distribution in this area. These complexities in the seismic velocity structure may relate to the multi-segment rupture character of the Kaikoura earthquake. Spatial correlations between rupture areas and high Vp/Vs suggest the involvement of overpressured fluid in the nucleation and propagation of rupture segments, which is also supported by the reactivation of unfavourably oriented strike-slip ruptures, many lying at c.70° to the regional maximum compressive stress trajectories.</p></div>\",\"PeriodicalId\":54614,\"journal\":{\"name\":\"Physics of the Earth and Planetary Interiors\",\"volume\":\"348 \",\"pages\":\"Article 107155\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S003192012400013X/pdfft?md5=c5526cb1a66b910c0d456f53dcf3d778&pid=1-s2.0-S003192012400013X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Earth and Planetary Interiors\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003192012400013X\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Earth and Planetary Interiors","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003192012400013X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Complexity of the 2016 M 7.8 Kaikōura, New Zealand, earthquake from seismic observation: Inferences of overpressured fluid involvement
The M 7.8 Kaikoura earthquake occurred in the northern South Island of New Zealand on 3 Nov., 2016, involving the rupture of >20 faults. To understand the complexity of the Kaikoura earthquake, details of the fault geometry, seismic velocity distribution, and stress field are necessary. We have undertaken seismic tomography along the c. 200 km length of the rupture zone. Data from both 51 temporary stations and 22 permanent (GeoNet) stations were collected from March 2011 to December 2018.
The hypocenter of the Kaikoura earthquake and aftershocks near the Kekerengu fault locate along lineaments where seismic velocity changes laterally in the epicentral region. In the uppermost crust, lower velocities occur beneath the Emu Plain and Cape Campbell. A higher velocity region near Kaikoura may have acted as a barrier that prevented eastward rupture from the hypocenter and led to the complex fault distribution in this area. These complexities in the seismic velocity structure may relate to the multi-segment rupture character of the Kaikoura earthquake. Spatial correlations between rupture areas and high Vp/Vs suggest the involvement of overpressured fluid in the nucleation and propagation of rupture segments, which is also supported by the reactivation of unfavourably oriented strike-slip ruptures, many lying at c.70° to the regional maximum compressive stress trajectories.
期刊介绍:
Launched in 1968 to fill the need for an international journal in the field of planetary physics, geodesy and geophysics, Physics of the Earth and Planetary Interiors has now grown to become important reading matter for all geophysicists. It is the only journal to be entirely devoted to the physical and chemical processes of planetary interiors.
Original research papers, review articles, short communications and book reviews are all published on a regular basis; and from time to time special issues of the journal are devoted to the publication of the proceedings of symposia and congresses which the editors feel will be of particular interest to the reader.