新型昆都非线性薛定谔方程的 N 索利子解法和黎曼-希尔伯特方法

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
Yipu Chen, Biao Li
{"title":"新型昆都非线性薛定谔方程的 N 索利子解法和黎曼-希尔伯特方法","authors":"Yipu Chen,&nbsp;Biao Li","doi":"10.1016/j.wavemoti.2024.103293","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the novel Kundu-nonlinear Schrödinger equation (nKundu-NLS) with zero boundary conditions by applying the inverse scattering method. A suitable Riemann–Hilbert problem (RHP) is formulated and solved by the Laurent expansion method. Through the Laurent series, the paper obtains the solutions of the RHP for different cases of the reflection coefficient, such as single and multiple poles. The paper demonstrates the effectiveness and generality of the inverse scattering method for solving the nKundu-NLS.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-soliton solutions for the novel Kundu-nonlinear Schrödinger equation and Riemann–Hilbert approach\",\"authors\":\"Yipu Chen,&nbsp;Biao Li\",\"doi\":\"10.1016/j.wavemoti.2024.103293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates the novel Kundu-nonlinear Schrödinger equation (nKundu-NLS) with zero boundary conditions by applying the inverse scattering method. A suitable Riemann–Hilbert problem (RHP) is formulated and solved by the Laurent expansion method. Through the Laurent series, the paper obtains the solutions of the RHP for different cases of the reflection coefficient, such as single and multiple poles. The paper demonstrates the effectiveness and generality of the inverse scattering method for solving the nKundu-NLS.</p></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524000234\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524000234","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文应用反散射法研究了具有零边界条件的新型昆都-非线性薛定谔方程(nKundu-NLS)。本文提出了一个合适的黎曼-希尔伯特问题(Riemann-Hilbert problem,RHP),并用洛朗展开法求解。通过洛朗级数,论文得到了不同反射系数情况下的 RHP 解,如单极和多极。论文证明了反散射法求解 nKundu-NLS 的有效性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
N-soliton solutions for the novel Kundu-nonlinear Schrödinger equation and Riemann–Hilbert approach

This paper investigates the novel Kundu-nonlinear Schrödinger equation (nKundu-NLS) with zero boundary conditions by applying the inverse scattering method. A suitable Riemann–Hilbert problem (RHP) is formulated and solved by the Laurent expansion method. Through the Laurent series, the paper obtains the solutions of the RHP for different cases of the reflection coefficient, such as single and multiple poles. The paper demonstrates the effectiveness and generality of the inverse scattering method for solving the nKundu-NLS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信