基于微流控电解质门控 TiS3 纳米带的场效应晶体管作为超灵敏无标记免疫传感器用于前列腺癌标记物分析

IF 5.4 Q1 CHEMISTRY, ANALYTICAL
Samira Mansouri Majd , Abdollah Salimi
{"title":"基于微流控电解质门控 TiS3 纳米带的场效应晶体管作为超灵敏无标记免疫传感器用于前列腺癌标记物分析","authors":"Samira Mansouri Majd ,&nbsp;Abdollah Salimi","doi":"10.1016/j.sbsr.2024.100627","DOIUrl":null,"url":null,"abstract":"<div><p>Early detection of prostate cancer, the second main cause of death in men, with robust assay platforms by using the appropriate biomarkers is of great importance for diagnosis and follow-up of disease under treatment. The aim of this research is to investigate how novel TiS<sub>3</sub> nanoribbons can be used as a channel material in the microfluidic electrolyte-gated field-effect transistor (FET), with the goal of developing a label-free immunosensor for the sensitive, selective, and rapid detection of PSA as a cancer marker in both PBS and human serum samples. To create an active channel material, the TiS<sub>3</sub> nanoribbons were deposited onto the FET surface through a drop-casting process, and the surface of the channel was subsequently modified with an anti-PSA monoclonal antibody. The electrical properties of the microfluidic electrolyte-gated TiS<sub>3</sub> nanoribbon-based FET were characterized, and the results showed that it exhibited a depletion-mode n-type behavior with a field-effect mobility of 2.3 × 10<sup>−3</sup> cm<sup>2</sup>/Vs, an I<sub>on</sub>/I<sub>off</sub> current ratio of 4.12, and a subthreshold swing (SS) of 914.1 mV/decade. As the concentration of PSA increased from 0.1 fg/mL to 10 pg/mL, there was a corresponding increase in the drain current with a high sensitivity of 2.2665 nA/decade and a detection limit of 0.04 fg/mL. Integrating the electrolyte-gated FET with the microfluidic channel resulted in improved performance of the microfluidic electrolyte-gated FET immunosensor. The combination of these two components led to better control and delivery of small sample volumes to the surface of the electrolyte-gated FET, which improved the repeatability of the obtained data. Based on the results obtained from the microfluidic immunosensor, it can be inferred that the developed platform has the potential to be an excellent candidate for point-of-care cancer diagnosis and therapeutic monitoring.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"43 ","pages":"Article 100627"},"PeriodicalIF":5.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000096/pdfft?md5=b4d1de87ff08f8f7ab59f4916a69d0ea&pid=1-s2.0-S2214180424000096-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Microfluidic electrolyte-gated TiS3 nanoribbons-based field-effect transistor as ultrasensitive label-free immunosensor for prostate cancer marker analysis\",\"authors\":\"Samira Mansouri Majd ,&nbsp;Abdollah Salimi\",\"doi\":\"10.1016/j.sbsr.2024.100627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Early detection of prostate cancer, the second main cause of death in men, with robust assay platforms by using the appropriate biomarkers is of great importance for diagnosis and follow-up of disease under treatment. The aim of this research is to investigate how novel TiS<sub>3</sub> nanoribbons can be used as a channel material in the microfluidic electrolyte-gated field-effect transistor (FET), with the goal of developing a label-free immunosensor for the sensitive, selective, and rapid detection of PSA as a cancer marker in both PBS and human serum samples. To create an active channel material, the TiS<sub>3</sub> nanoribbons were deposited onto the FET surface through a drop-casting process, and the surface of the channel was subsequently modified with an anti-PSA monoclonal antibody. The electrical properties of the microfluidic electrolyte-gated TiS<sub>3</sub> nanoribbon-based FET were characterized, and the results showed that it exhibited a depletion-mode n-type behavior with a field-effect mobility of 2.3 × 10<sup>−3</sup> cm<sup>2</sup>/Vs, an I<sub>on</sub>/I<sub>off</sub> current ratio of 4.12, and a subthreshold swing (SS) of 914.1 mV/decade. As the concentration of PSA increased from 0.1 fg/mL to 10 pg/mL, there was a corresponding increase in the drain current with a high sensitivity of 2.2665 nA/decade and a detection limit of 0.04 fg/mL. Integrating the electrolyte-gated FET with the microfluidic channel resulted in improved performance of the microfluidic electrolyte-gated FET immunosensor. The combination of these two components led to better control and delivery of small sample volumes to the surface of the electrolyte-gated FET, which improved the repeatability of the obtained data. Based on the results obtained from the microfluidic immunosensor, it can be inferred that the developed platform has the potential to be an excellent candidate for point-of-care cancer diagnosis and therapeutic monitoring.</p></div>\",\"PeriodicalId\":424,\"journal\":{\"name\":\"Sensing and Bio-Sensing Research\",\"volume\":\"43 \",\"pages\":\"Article 100627\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000096/pdfft?md5=b4d1de87ff08f8f7ab59f4916a69d0ea&pid=1-s2.0-S2214180424000096-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensing and Bio-Sensing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

前列腺癌是导致男性死亡的第二大原因,利用适当的生物标记物和可靠的检测平台及早发现前列腺癌对于诊断和跟踪治疗中的疾病具有重要意义。本研究旨在探讨如何在微流体电解质门控场效应晶体管(FET)中使用新型 TiS3 纳米带作为通道材料,从而开发出一种无标记免疫传感器,用于灵敏、选择性和快速地检测 PBS 和人体血清样本中的癌症标志物 PSA。为了创建有源通道材料,TiS3 纳米带通过滴铸工艺沉积到 FET 表面,然后用抗 PSA 单克隆抗体修饰通道表面。对微流体电解质门控 TiS3 纳米带基 FET 的电学特性进行了表征,结果表明它具有耗尽型 n 型行为,场效应迁移率为 2.3 × 10-3 cm2/Vs,离子/关断电流比为 4.12,阈下摆动 (SS) 为 914.1 mV/decade。随着 PSA 浓度从 0.1 fg/mL 增加到 10 pg/mL,漏极电流也相应增加,灵敏度高达 2.2665 nA/decade,检测限为 0.04 fg/mL。将电解质门控场效应晶体管与微流控通道相结合,提高了微流控电解质门控场效应晶体管免疫传感器的性能。这两个元件的结合能更好地控制小体积样品并将其输送到电解质门控 FET 表面,从而提高了所获数据的可重复性。根据微流控免疫传感器获得的结果,可以推断所开发的平台有可能成为癌症护理点诊断和治疗监测的绝佳候选方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microfluidic electrolyte-gated TiS3 nanoribbons-based field-effect transistor as ultrasensitive label-free immunosensor for prostate cancer marker analysis

Early detection of prostate cancer, the second main cause of death in men, with robust assay platforms by using the appropriate biomarkers is of great importance for diagnosis and follow-up of disease under treatment. The aim of this research is to investigate how novel TiS3 nanoribbons can be used as a channel material in the microfluidic electrolyte-gated field-effect transistor (FET), with the goal of developing a label-free immunosensor for the sensitive, selective, and rapid detection of PSA as a cancer marker in both PBS and human serum samples. To create an active channel material, the TiS3 nanoribbons were deposited onto the FET surface through a drop-casting process, and the surface of the channel was subsequently modified with an anti-PSA monoclonal antibody. The electrical properties of the microfluidic electrolyte-gated TiS3 nanoribbon-based FET were characterized, and the results showed that it exhibited a depletion-mode n-type behavior with a field-effect mobility of 2.3 × 10−3 cm2/Vs, an Ion/Ioff current ratio of 4.12, and a subthreshold swing (SS) of 914.1 mV/decade. As the concentration of PSA increased from 0.1 fg/mL to 10 pg/mL, there was a corresponding increase in the drain current with a high sensitivity of 2.2665 nA/decade and a detection limit of 0.04 fg/mL. Integrating the electrolyte-gated FET with the microfluidic channel resulted in improved performance of the microfluidic electrolyte-gated FET immunosensor. The combination of these two components led to better control and delivery of small sample volumes to the surface of the electrolyte-gated FET, which improved the repeatability of the obtained data. Based on the results obtained from the microfluidic immunosensor, it can be inferred that the developed platform has the potential to be an excellent candidate for point-of-care cancer diagnosis and therapeutic monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensing and Bio-Sensing Research
Sensing and Bio-Sensing Research Engineering-Electrical and Electronic Engineering
CiteScore
10.70
自引率
3.80%
发文量
68
审稿时长
87 days
期刊介绍: Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies. The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信