Ze-lin Wu , Cong-wei Wang , Xiao-xiang Zhang , Quan-gui Guo , Jun-ying Wang
{"title":"石墨烯基二氧化碳还原电催化剂:综述","authors":"Ze-lin Wu , Cong-wei Wang , Xiao-xiang Zhang , Quan-gui Guo , Jun-ying Wang","doi":"10.1016/S1872-5805(24)60839-5","DOIUrl":null,"url":null,"abstract":"<div><p>The reduction of carbon dioxide (CO<sub>2</sub>) by electrochemical methods for the production of fuels and value-added chemicals is an effective strategy for overcoming the global warming problem. Due to the stable molecular structure of CO<sub>2</sub>, the design of highly selective, energy-efficient and cost-effective electrocatalysts is key. For this reason, graphene and its derivatives are competitive for CO<sub>2</sub> electroreduction with their unique and excellent physical, mechanical and electrical properties and relatively low cost. In addition, the surface of graphene-based materials can be modified using different methods, including doping, defect engineering, production of composite structures and wrapped shapes. We first review the fundamental concepts and criteria for evaluating electrochemical CO<sub>2</sub> reduction, as well as the catalytic principles and processes. Methods for preparing graphene-based catalysts are briefly introduced, and recent research on them is summarized according to the categories of the catalytic sites. Finally, the future development direction of CO<sub>2</sub> electroreduction technology is discussed.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 1","pages":"Pages 100-130"},"PeriodicalIF":5.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1872580524608395/pdf?md5=14b5913d9a3497fecb7a75487977444f&pid=1-s2.0-S1872580524608395-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Graphene-based CO2 reduction electrocatalysts: A review\",\"authors\":\"Ze-lin Wu , Cong-wei Wang , Xiao-xiang Zhang , Quan-gui Guo , Jun-ying Wang\",\"doi\":\"10.1016/S1872-5805(24)60839-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The reduction of carbon dioxide (CO<sub>2</sub>) by electrochemical methods for the production of fuels and value-added chemicals is an effective strategy for overcoming the global warming problem. Due to the stable molecular structure of CO<sub>2</sub>, the design of highly selective, energy-efficient and cost-effective electrocatalysts is key. For this reason, graphene and its derivatives are competitive for CO<sub>2</sub> electroreduction with their unique and excellent physical, mechanical and electrical properties and relatively low cost. In addition, the surface of graphene-based materials can be modified using different methods, including doping, defect engineering, production of composite structures and wrapped shapes. We first review the fundamental concepts and criteria for evaluating electrochemical CO<sub>2</sub> reduction, as well as the catalytic principles and processes. Methods for preparing graphene-based catalysts are briefly introduced, and recent research on them is summarized according to the categories of the catalytic sites. Finally, the future development direction of CO<sub>2</sub> electroreduction technology is discussed.</p></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":\"39 1\",\"pages\":\"Pages 100-130\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1872580524608395/pdf?md5=14b5913d9a3497fecb7a75487977444f&pid=1-s2.0-S1872580524608395-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872580524608395\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580524608395","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Graphene-based CO2 reduction electrocatalysts: A review
The reduction of carbon dioxide (CO2) by electrochemical methods for the production of fuels and value-added chemicals is an effective strategy for overcoming the global warming problem. Due to the stable molecular structure of CO2, the design of highly selective, energy-efficient and cost-effective electrocatalysts is key. For this reason, graphene and its derivatives are competitive for CO2 electroreduction with their unique and excellent physical, mechanical and electrical properties and relatively low cost. In addition, the surface of graphene-based materials can be modified using different methods, including doping, defect engineering, production of composite structures and wrapped shapes. We first review the fundamental concepts and criteria for evaluating electrochemical CO2 reduction, as well as the catalytic principles and processes. Methods for preparing graphene-based catalysts are briefly introduced, and recent research on them is summarized according to the categories of the catalytic sites. Finally, the future development direction of CO2 electroreduction technology is discussed.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.