具有狭窄和转弯通道的添加式制造热交换器的除灰处理

IF 4.2 Q2 ENGINEERING, MANUFACTURING
Wenchao Du, Wenhua Yu, David M. France, Dileep Singh
{"title":"具有狭窄和转弯通道的添加式制造热交换器的除灰处理","authors":"Wenchao Du,&nbsp;Wenhua Yu,&nbsp;David M. France,&nbsp;Dileep Singh","doi":"10.1016/j.addlet.2024.100202","DOIUrl":null,"url":null,"abstract":"<div><p>The evolution of heat exchangers (HXs) manufactured by additive manufacturing techniques is significantly needed. The depowdering solution is a necessity, especially if flow channels are incorporated into the design. In this study, a one-piece HX with multiple layers of internal channels (printed by binder jetting additive manufacturing) was completely depowdered through a developed approach. Each HX channel has a semi-elliptical geometry, four perpendicular turnings along the approximately 200-mm length, and an approximately 80-mm center segment that is inaccessible due to the turnings. To depowder this component, two approaches including the compressed air and the vortex motion were tested first. It was found that the compressed air or vortex motion alone could partially depowder the internal unbound powder of the printed heat exchanger. Consequently, for complete depowdering, a combined approach of the vortex motion and compressed air blowing with multiple cycles was developed and tested. A study of the effect of the vortex duration in each depowdering cycle was conducted, and results showed that an increase from five minutes to ten minutes resulted in a reduced number of stages for a complete depowdering.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369024000112/pdfft?md5=f9df06c7eeaefb2858b45396a0e2df02&pid=1-s2.0-S2772369024000112-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Depowdering of an additively manufactured heat exchanger with narrow and turning channels\",\"authors\":\"Wenchao Du,&nbsp;Wenhua Yu,&nbsp;David M. France,&nbsp;Dileep Singh\",\"doi\":\"10.1016/j.addlet.2024.100202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The evolution of heat exchangers (HXs) manufactured by additive manufacturing techniques is significantly needed. The depowdering solution is a necessity, especially if flow channels are incorporated into the design. In this study, a one-piece HX with multiple layers of internal channels (printed by binder jetting additive manufacturing) was completely depowdered through a developed approach. Each HX channel has a semi-elliptical geometry, four perpendicular turnings along the approximately 200-mm length, and an approximately 80-mm center segment that is inaccessible due to the turnings. To depowder this component, two approaches including the compressed air and the vortex motion were tested first. It was found that the compressed air or vortex motion alone could partially depowder the internal unbound powder of the printed heat exchanger. Consequently, for complete depowdering, a combined approach of the vortex motion and compressed air blowing with multiple cycles was developed and tested. A study of the effect of the vortex duration in each depowdering cycle was conducted, and results showed that an increase from five minutes to ten minutes resulted in a reduced number of stages for a complete depowdering.</p></div>\",\"PeriodicalId\":72068,\"journal\":{\"name\":\"Additive manufacturing letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772369024000112/pdfft?md5=f9df06c7eeaefb2858b45396a0e2df02&pid=1-s2.0-S2772369024000112-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772369024000112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369024000112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

采用增材制造技术制造的热交换器(HX)亟待改进。去粉解决方案是必要的,尤其是在设计中加入了流道的情况下。在本研究中,通过开发的方法,对带有多层内部通道的一体式 HX(通过粘合剂喷射增材制造技术打印)进行了完全除粉。每个 HX 通道都具有半椭圆形的几何形状,在约 200 毫米的长度上有四个垂直的转角,中间约 80 毫米的部分由于转角而无法进入。为了对该部件进行除粉,首先测试了两种方法,包括压缩空气和涡流运动。结果发现,仅压缩空气或涡流运动就能对印刷热交换器内部未结合的粉末进行部分除粉。因此,为了实现完全除粉,我们开发并测试了一种涡流运动和压缩空气多次循环喷吹的组合方法。对每个除粉周期中涡流持续时间的影响进行了研究,结果表明,将持续时间从五分钟增加到十分钟,可减少完全除粉的阶段数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Depowdering of an additively manufactured heat exchanger with narrow and turning channels

Depowdering of an additively manufactured heat exchanger with narrow and turning channels

The evolution of heat exchangers (HXs) manufactured by additive manufacturing techniques is significantly needed. The depowdering solution is a necessity, especially if flow channels are incorporated into the design. In this study, a one-piece HX with multiple layers of internal channels (printed by binder jetting additive manufacturing) was completely depowdered through a developed approach. Each HX channel has a semi-elliptical geometry, four perpendicular turnings along the approximately 200-mm length, and an approximately 80-mm center segment that is inaccessible due to the turnings. To depowder this component, two approaches including the compressed air and the vortex motion were tested first. It was found that the compressed air or vortex motion alone could partially depowder the internal unbound powder of the printed heat exchanger. Consequently, for complete depowdering, a combined approach of the vortex motion and compressed air blowing with multiple cycles was developed and tested. A study of the effect of the vortex duration in each depowdering cycle was conducted, and results showed that an increase from five minutes to ten minutes resulted in a reduced number of stages for a complete depowdering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信