M. Kodama , N. Uno , Y. Takase , O. Aoki , R. Iwamura , T. Kotaka , K. Aotani , S. Hirai
{"title":"全固态锂金属电池中的锂沉积的 X 射线计算机断层扫描分析,其中的碳夹层是通过不同工艺粘合的","authors":"M. Kodama , N. Uno , Y. Takase , O. Aoki , R. Iwamura , T. Kotaka , K. Aotani , S. Hirai","doi":"10.1016/j.powera.2024.100142","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-metal anodes are promising electrodes for fabricating high-capacity all-solid-state batteries; however, lithium dendrite growth during charging limits their applicability. One method to suppress lithium dendrite growth is to insert a carbon interlayer between the solid electrolyte and the lithium-metal anode. There are many potential approaches for inserting a carbon interlayer. The optimal conditions for suppressing lithium dendrite growth and ensuring uniform lithium deposition have not yet been established. This study employs X-ray computed tomography to investigate anode-less all-solid-state batteries. Pressurized xenon is used to examine how the carbon interlayer functions and how uniformly lithium is deposited after various carbon interlayer insertion processes. Uniform deposition is observed following simultaneous pressure bonding of the carbon interlayer and compression of the solid electrolyte.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"26 ","pages":"Article 100142"},"PeriodicalIF":5.4000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248524000088/pdfft?md5=d92ae7a765e2fb85f695be2c44f00356&pid=1-s2.0-S2666248524000088-main.pdf","citationCount":"0","resultStr":"{\"title\":\"X-ray computed tomography analysis of lithium deposition in all-solid-state lithium-metal batteries with carbon interlayers bonded through various processes\",\"authors\":\"M. Kodama , N. Uno , Y. Takase , O. Aoki , R. Iwamura , T. Kotaka , K. Aotani , S. Hirai\",\"doi\":\"10.1016/j.powera.2024.100142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lithium-metal anodes are promising electrodes for fabricating high-capacity all-solid-state batteries; however, lithium dendrite growth during charging limits their applicability. One method to suppress lithium dendrite growth is to insert a carbon interlayer between the solid electrolyte and the lithium-metal anode. There are many potential approaches for inserting a carbon interlayer. The optimal conditions for suppressing lithium dendrite growth and ensuring uniform lithium deposition have not yet been established. This study employs X-ray computed tomography to investigate anode-less all-solid-state batteries. Pressurized xenon is used to examine how the carbon interlayer functions and how uniformly lithium is deposited after various carbon interlayer insertion processes. Uniform deposition is observed following simultaneous pressure bonding of the carbon interlayer and compression of the solid electrolyte.</p></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":\"26 \",\"pages\":\"Article 100142\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666248524000088/pdfft?md5=d92ae7a765e2fb85f695be2c44f00356&pid=1-s2.0-S2666248524000088-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248524000088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248524000088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
锂金属阳极是制造高容量全固态电池的理想电极;然而,充电过程中锂枝晶的生长限制了其适用性。抑制锂枝晶生长的一种方法是在固态电解质和锂金属阳极之间插入一层碳夹层。插入碳中间层有许多潜在的方法。抑制锂枝晶生长和确保锂沉积均匀的最佳条件尚未确定。本研究采用 X 射线计算机断层扫描技术研究无阳极全固态电池。利用加压氙气来研究碳夹层的功能以及各种碳夹层插入过程后锂沉积的均匀性。在碳夹层同时加压结合和压缩固体电解质后,观察到了均匀沉积。
X-ray computed tomography analysis of lithium deposition in all-solid-state lithium-metal batteries with carbon interlayers bonded through various processes
Lithium-metal anodes are promising electrodes for fabricating high-capacity all-solid-state batteries; however, lithium dendrite growth during charging limits their applicability. One method to suppress lithium dendrite growth is to insert a carbon interlayer between the solid electrolyte and the lithium-metal anode. There are many potential approaches for inserting a carbon interlayer. The optimal conditions for suppressing lithium dendrite growth and ensuring uniform lithium deposition have not yet been established. This study employs X-ray computed tomography to investigate anode-less all-solid-state batteries. Pressurized xenon is used to examine how the carbon interlayer functions and how uniformly lithium is deposited after various carbon interlayer insertion processes. Uniform deposition is observed following simultaneous pressure bonding of the carbon interlayer and compression of the solid electrolyte.