灰能对最佳墙体保温厚度的影响

IF 0.2 4区 工程技术 Q4 CONSTRUCTION & BUILDING TECHNOLOGY
Bauphysik Pub Date : 2024-02-13 DOI:10.1002/bapi.202300021
M.Sc. Branca Delmonte, Dr.-Ing. Sebastian Latz, M.Sc. Jules Youmbi, Prof. Dr.-Ing. Stefan Maas
{"title":"灰能对最佳墙体保温厚度的影响","authors":"M.Sc. Branca Delmonte,&nbsp;Dr.-Ing. Sebastian Latz,&nbsp;M.Sc. Jules Youmbi,&nbsp;Prof. Dr.-Ing. Stefan Maas","doi":"10.1002/bapi.202300021","DOIUrl":null,"url":null,"abstract":"<p>For decades efforts have been made to reduce the greenhouse gases emissions of buildings by reducing their energy demand with governmental regulations in Europe, pushing towards very low thermal transmittances (<i>U</i>-values) with ever thicker insulation layers for new buildings. However, there is no linear relationship between the insulation thickness and the heat losses. Therefore, above a certain thickness the consumption of buildings does not decrease significantly. Hereafter a life cycle analysis, including emissions before the building becomes operational is applied to evaluate the impact of the increasing thickness of components on the overall emissions. Publicly available product data sheets are used to compare four insulation materials under three scenarios. These analyses yield interesting results showing that energy-intensive insulation materials lead to a negative impact in the overall energy balance after a certain thickness. Even though there is not always a pronounced optimum insulation thickness, it is logical that further reductions in <i>U</i>-value for new buildings should hence be carefully evaluated. The results show that the optimal thickness is around 20 cm for most materials, while the important major savings come from the first 10 cm.</p>","PeriodicalId":55397,"journal":{"name":"Bauphysik","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of grey energy on optimal wall insulation thickness\",\"authors\":\"M.Sc. Branca Delmonte,&nbsp;Dr.-Ing. Sebastian Latz,&nbsp;M.Sc. Jules Youmbi,&nbsp;Prof. Dr.-Ing. Stefan Maas\",\"doi\":\"10.1002/bapi.202300021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For decades efforts have been made to reduce the greenhouse gases emissions of buildings by reducing their energy demand with governmental regulations in Europe, pushing towards very low thermal transmittances (<i>U</i>-values) with ever thicker insulation layers for new buildings. However, there is no linear relationship between the insulation thickness and the heat losses. Therefore, above a certain thickness the consumption of buildings does not decrease significantly. Hereafter a life cycle analysis, including emissions before the building becomes operational is applied to evaluate the impact of the increasing thickness of components on the overall emissions. Publicly available product data sheets are used to compare four insulation materials under three scenarios. These analyses yield interesting results showing that energy-intensive insulation materials lead to a negative impact in the overall energy balance after a certain thickness. Even though there is not always a pronounced optimum insulation thickness, it is logical that further reductions in <i>U</i>-value for new buildings should hence be carefully evaluated. The results show that the optimal thickness is around 20 cm for most materials, while the important major savings come from the first 10 cm.</p>\",\"PeriodicalId\":55397,\"journal\":{\"name\":\"Bauphysik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bauphysik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bapi.202300021\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bauphysik","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bapi.202300021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

几十年来,欧洲政府一直在努力通过减少能源需求来减少建筑物的温室气体排放,并推动新建建筑物采用更厚的隔热层来降低热传导率(U 值)。然而,隔热层厚度与热损失之间并不存在线性关系。因此,超过一定厚度后,建筑物的消耗量不会明显减少。因此,我们采用了生命周期分析法,包括建筑物投入使用前的排放量,以评估部件厚度增加对总体排放量的影响。公开的产品数据表用于比较三种情况下的四种隔热材料。这些分析得出的有趣结果表明,高能耗保温材料在达到一定厚度后会对整体能源平衡产生负面影响。尽管并不总是存在一个明显的最佳隔热厚度,但对新建建筑进一步降低 U 值进行仔细评估是合乎逻辑的。研究结果表明,对于大多数材料来说,最佳厚度约为 20 厘米,而主要的节能效果来自最初的 10 厘米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of grey energy on optimal wall insulation thickness

For decades efforts have been made to reduce the greenhouse gases emissions of buildings by reducing their energy demand with governmental regulations in Europe, pushing towards very low thermal transmittances (U-values) with ever thicker insulation layers for new buildings. However, there is no linear relationship between the insulation thickness and the heat losses. Therefore, above a certain thickness the consumption of buildings does not decrease significantly. Hereafter a life cycle analysis, including emissions before the building becomes operational is applied to evaluate the impact of the increasing thickness of components on the overall emissions. Publicly available product data sheets are used to compare four insulation materials under three scenarios. These analyses yield interesting results showing that energy-intensive insulation materials lead to a negative impact in the overall energy balance after a certain thickness. Even though there is not always a pronounced optimum insulation thickness, it is logical that further reductions in U-value for new buildings should hence be carefully evaluated. The results show that the optimal thickness is around 20 cm for most materials, while the important major savings come from the first 10 cm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bauphysik
Bauphysik 工程技术-结构与建筑技术
CiteScore
0.80
自引率
33.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Seit 35 Jahren ist Bauphysik die einzige deutsche Fachzeitschrift, die alle Einzelgebiete der Bauphysik bündelt. Hier werden jährlich ca. 35 wissenschaftliche Aufsätze und Projektberichte mit interdisziplinärem Hintergrund veröffentlicht und aktuelle technische Entwicklungen vorgestellt. Damit ist die Zeitschrift Spiegel der Forschung in Wissenschaft und Industrie und der Normung, mit starken Impulsen aus der Planungspraxis. Themenüberblick: Wärmeschutz Feuchteschutz Schallschutz und Raumakustik Brandschutz Tageslicht Stadtbauphysik Energiesparendes Bauen und Raumklima Berechnungs- und Simulationsverfahren Technische Regelwerke Innovative Lösungen aus der Industrie
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信