利用深度内部学习和自我监督学习实现高光谱图像超分辨率

IF 8.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhe Liu, Xian-Hua Han
{"title":"利用深度内部学习和自我监督学习实现高光谱图像超分辨率","authors":"Zhe Liu,&nbsp;Xian-Hua Han","doi":"10.1049/cit2.12285","DOIUrl":null,"url":null,"abstract":"<p>By automatically learning the priors embedded in images with powerful modelling capabilities, deep learning-based algorithms have recently made considerable progress in reconstructing the high-resolution hyperspectral (HR-HS) image. With previously collected large-amount of external data, these methods are intuitively realised under the full supervision of the ground-truth data. Thus, the database construction in merging the low-resolution (LR) HS (LR-HS) and HR multispectral (MS) or RGB image research paradigm, commonly named as HSI SR, requires collecting corresponding training triplets: HR-MS (RGB), LR-HS and HR-HS image simultaneously, and often faces difficulties in reality. The learned models with the training datasets collected simultaneously under controlled conditions may significantly degrade the HSI super-resolved performance to the real images captured under diverse environments. To handle the above-mentioned limitations, the authors propose to leverage the deep internal and self-supervised learning to solve the HSI SR problem. The authors advocate that it is possible to train a specific CNN model at test time, called as deep internal learning (DIL), by on-line preparing the training triplet samples from the observed LR-HS/HR-MS (or RGB) images and the down-sampled LR-HS version. However, the number of the training triplets extracted solely from the transformed data of the observation itself is extremely few particularly for the HSI SR tasks with large spatial upscale factors, which would result in limited reconstruction performance. To solve this problem, the authors further exploit deep self-supervised learning (DSL) by considering the observations as the unlabelled training samples. Specifically, the degradation modules inside the network were elaborated to realise the spatial and spectral down-sampling procedures for transforming the generated HR-HS estimation to the high-resolution RGB/LR-HS approximation, and then the reconstruction errors of the observations were formulated for measuring the network modelling performance. By consolidating the DIL and DSL into a unified deep framework, the authors construct a more robust HSI SR method without any prior training and have great potential of flexible adaptation to different settings per observation. To verify the effectiveness of the proposed approach, extensive experiments have been conducted on two benchmark HS datasets, including the CAVE and Harvard datasets, and demonstrate the great performance gain of the proposed method over the state-of-the-art methods.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12285","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral image super resolution using deep internal and self-supervised learning\",\"authors\":\"Zhe Liu,&nbsp;Xian-Hua Han\",\"doi\":\"10.1049/cit2.12285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By automatically learning the priors embedded in images with powerful modelling capabilities, deep learning-based algorithms have recently made considerable progress in reconstructing the high-resolution hyperspectral (HR-HS) image. With previously collected large-amount of external data, these methods are intuitively realised under the full supervision of the ground-truth data. Thus, the database construction in merging the low-resolution (LR) HS (LR-HS) and HR multispectral (MS) or RGB image research paradigm, commonly named as HSI SR, requires collecting corresponding training triplets: HR-MS (RGB), LR-HS and HR-HS image simultaneously, and often faces difficulties in reality. The learned models with the training datasets collected simultaneously under controlled conditions may significantly degrade the HSI super-resolved performance to the real images captured under diverse environments. To handle the above-mentioned limitations, the authors propose to leverage the deep internal and self-supervised learning to solve the HSI SR problem. The authors advocate that it is possible to train a specific CNN model at test time, called as deep internal learning (DIL), by on-line preparing the training triplet samples from the observed LR-HS/HR-MS (or RGB) images and the down-sampled LR-HS version. However, the number of the training triplets extracted solely from the transformed data of the observation itself is extremely few particularly for the HSI SR tasks with large spatial upscale factors, which would result in limited reconstruction performance. To solve this problem, the authors further exploit deep self-supervised learning (DSL) by considering the observations as the unlabelled training samples. Specifically, the degradation modules inside the network were elaborated to realise the spatial and spectral down-sampling procedures for transforming the generated HR-HS estimation to the high-resolution RGB/LR-HS approximation, and then the reconstruction errors of the observations were formulated for measuring the network modelling performance. By consolidating the DIL and DSL into a unified deep framework, the authors construct a more robust HSI SR method without any prior training and have great potential of flexible adaptation to different settings per observation. To verify the effectiveness of the proposed approach, extensive experiments have been conducted on two benchmark HS datasets, including the CAVE and Harvard datasets, and demonstrate the great performance gain of the proposed method over the state-of-the-art methods.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12285\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12285\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12285","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

通过自动学习图像中蕴含的具有强大建模能力的先验,基于深度学习的算法最近在重建高分辨率高光谱(HR-HS)图像方面取得了长足的进步。有了之前收集的大量外部数据,这些方法就能在地面实况数据的全面监督下直观地实现。因此,合并低分辨率(LR)高光谱(LR-HS)和高分辨率多光谱(MS)或 RGB 图像研究范例(通常称为 HSI SR)的数据库建设需要收集相应的训练三元组:HR-MS (RGB)、LR-HS 和 HR-HS 图像,在现实中往往面临困难。在受控条件下同时收集训练数据集的学习模型,可能会大大降低在不同环境下拍摄的真实图像的恒星仪超分辨性能。针对上述局限性,作者提出利用深度内部学习和自监督学习来解决恒星仪超分辨问题。作者认为,在测试时,可以通过在线准备观测到的 LR-HS/HR-MS (或 RGB)图像和向下采样的 LR-HS 版本的训练三元组样本来训练特定的 CNN 模型,称为深度内部学习(DIL)。然而,仅从观测数据本身的转换数据中提取的训练三元组数量极少,特别是对于空间放大系数较大的 HSI SR 任务,这将导致重建性能有限。为解决这一问题,作者进一步利用深度自监督学习(DSL),将观测数据视为未标记的训练样本。具体而言,作者详细阐述了网络内部的降级模块,以实现空间和光谱下采样程序,将生成的 HR-HS 估计转换为高分辨率 RGB/LR-HS 近似值,然后计算观测值的重建误差,以衡量网络建模性能。通过将 DIL 和 DSL 整合到一个统一的深度框架中,作者构建了一种更稳健的 HSI SR 方法,无需任何事先训练,并具有灵活适应每个观测点不同设置的巨大潜力。为了验证所提方法的有效性,我们在两个基准 HS 数据集(包括 CAVE 和 Harvard 数据集)上进行了大量实验,结果表明所提方法的性能大大优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hyperspectral image super resolution using deep internal and self-supervised learning

Hyperspectral image super resolution using deep internal and self-supervised learning

By automatically learning the priors embedded in images with powerful modelling capabilities, deep learning-based algorithms have recently made considerable progress in reconstructing the high-resolution hyperspectral (HR-HS) image. With previously collected large-amount of external data, these methods are intuitively realised under the full supervision of the ground-truth data. Thus, the database construction in merging the low-resolution (LR) HS (LR-HS) and HR multispectral (MS) or RGB image research paradigm, commonly named as HSI SR, requires collecting corresponding training triplets: HR-MS (RGB), LR-HS and HR-HS image simultaneously, and often faces difficulties in reality. The learned models with the training datasets collected simultaneously under controlled conditions may significantly degrade the HSI super-resolved performance to the real images captured under diverse environments. To handle the above-mentioned limitations, the authors propose to leverage the deep internal and self-supervised learning to solve the HSI SR problem. The authors advocate that it is possible to train a specific CNN model at test time, called as deep internal learning (DIL), by on-line preparing the training triplet samples from the observed LR-HS/HR-MS (or RGB) images and the down-sampled LR-HS version. However, the number of the training triplets extracted solely from the transformed data of the observation itself is extremely few particularly for the HSI SR tasks with large spatial upscale factors, which would result in limited reconstruction performance. To solve this problem, the authors further exploit deep self-supervised learning (DSL) by considering the observations as the unlabelled training samples. Specifically, the degradation modules inside the network were elaborated to realise the spatial and spectral down-sampling procedures for transforming the generated HR-HS estimation to the high-resolution RGB/LR-HS approximation, and then the reconstruction errors of the observations were formulated for measuring the network modelling performance. By consolidating the DIL and DSL into a unified deep framework, the authors construct a more robust HSI SR method without any prior training and have great potential of flexible adaptation to different settings per observation. To verify the effectiveness of the proposed approach, extensive experiments have been conducted on two benchmark HS datasets, including the CAVE and Harvard datasets, and demonstrate the great performance gain of the proposed method over the state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CAAI Transactions on Intelligence Technology
CAAI Transactions on Intelligence Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
11.00
自引率
3.90%
发文量
134
审稿时长
35 weeks
期刊介绍: CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信