通过将 Al2O3 限制在碳化硅框架中,稳定 F-Al-O 活性中心,实现 1,1- 二氟乙烷温室气体的转化

IF 1.7 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR
Xiaoli Wei , Yiwei Sun , Jianhai Jiang , Zhen Wang , Wei Zhang , Bing Liu , Shucheng Wang , Xiaodan Yang , Wanjin Yu , Jianjun Zhang , Wenfeng Han
{"title":"通过将 Al2O3 限制在碳化硅框架中,稳定 F-Al-O 活性中心,实现 1,1- 二氟乙烷温室气体的转化","authors":"Xiaoli Wei ,&nbsp;Yiwei Sun ,&nbsp;Jianhai Jiang ,&nbsp;Zhen Wang ,&nbsp;Wei Zhang ,&nbsp;Bing Liu ,&nbsp;Shucheng Wang ,&nbsp;Xiaodan Yang ,&nbsp;Wanjin Yu ,&nbsp;Jianjun Zhang ,&nbsp;Wenfeng Han","doi":"10.1016/j.jfluchem.2024.110257","DOIUrl":null,"url":null,"abstract":"<div><p>Al<sub>2</sub>O<sub>3</sub> exhibits high activity for the resource utilization of potent greenhouse gases, hydrofluorocarbons via dehydrofluorination or F/Cl exchange. However, it experiences completely fluorination under corrosive HF environment, leading to thorough fluorination of F-Al-O active site into F-Al-F, accompanied with serious carbon deposition. In this work, we successfully confined Al<sub>2</sub>O<sub>3</sub> in SiC (Al<sub>2</sub>O<sub>3</sub>@SiC) via treating Al<sub>2</sub>O<sub>3</sub>/SiC under high temperatures (&gt;800 °C). The results showed that different with simple loaded Al<sub>2</sub>O<sub>3</sub>(Al<sub>2</sub>O<sub>3</sub>/SiC), during high temperature treatment, reaction between Al<sub>2</sub>O<sub>3</sub> and SiC occurred, leading to the confinement effect. Then, contributed by the interaction, desired F-Al-O species could be stabilized on the surface of SiC. While for Al<sub>2</sub>O<sub>3</sub>/SiC, it thoroughly turned into AlF<sub>3</sub> under identical reactive conditions, leading to inferior stability during CH<sub>3</sub>CHF<sub>2</sub> dehydrofluorination. Furthermore, the reaction rate of 5 %Al<sub>2</sub>O<sub>3</sub>@SiC is nearly up to 4 folds higher than that of traditional AlF<sub>3</sub>. Facilitated by the suitable Lewis acid intensity, less carbon deposition formed on Al<sub>2</sub>O<sub>3</sub>@SiC. Thus, constructing strong interaction between F-Al-O and stable SiC provides a potential strategy to stabilize unstable active centers.</p></div>","PeriodicalId":357,"journal":{"name":"Journal of Fluorine Chemistry","volume":"274 ","pages":"Article 110257"},"PeriodicalIF":1.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilizing F-Al-O active center via confinement of Al2O3 in SiC framework for conversion of 1,1-difluoroethane greenhouse gas\",\"authors\":\"Xiaoli Wei ,&nbsp;Yiwei Sun ,&nbsp;Jianhai Jiang ,&nbsp;Zhen Wang ,&nbsp;Wei Zhang ,&nbsp;Bing Liu ,&nbsp;Shucheng Wang ,&nbsp;Xiaodan Yang ,&nbsp;Wanjin Yu ,&nbsp;Jianjun Zhang ,&nbsp;Wenfeng Han\",\"doi\":\"10.1016/j.jfluchem.2024.110257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Al<sub>2</sub>O<sub>3</sub> exhibits high activity for the resource utilization of potent greenhouse gases, hydrofluorocarbons via dehydrofluorination or F/Cl exchange. However, it experiences completely fluorination under corrosive HF environment, leading to thorough fluorination of F-Al-O active site into F-Al-F, accompanied with serious carbon deposition. In this work, we successfully confined Al<sub>2</sub>O<sub>3</sub> in SiC (Al<sub>2</sub>O<sub>3</sub>@SiC) via treating Al<sub>2</sub>O<sub>3</sub>/SiC under high temperatures (&gt;800 °C). The results showed that different with simple loaded Al<sub>2</sub>O<sub>3</sub>(Al<sub>2</sub>O<sub>3</sub>/SiC), during high temperature treatment, reaction between Al<sub>2</sub>O<sub>3</sub> and SiC occurred, leading to the confinement effect. Then, contributed by the interaction, desired F-Al-O species could be stabilized on the surface of SiC. While for Al<sub>2</sub>O<sub>3</sub>/SiC, it thoroughly turned into AlF<sub>3</sub> under identical reactive conditions, leading to inferior stability during CH<sub>3</sub>CHF<sub>2</sub> dehydrofluorination. Furthermore, the reaction rate of 5 %Al<sub>2</sub>O<sub>3</sub>@SiC is nearly up to 4 folds higher than that of traditional AlF<sub>3</sub>. Facilitated by the suitable Lewis acid intensity, less carbon deposition formed on Al<sub>2</sub>O<sub>3</sub>@SiC. Thus, constructing strong interaction between F-Al-O and stable SiC provides a potential strategy to stabilize unstable active centers.</p></div>\",\"PeriodicalId\":357,\"journal\":{\"name\":\"Journal of Fluorine Chemistry\",\"volume\":\"274 \",\"pages\":\"Article 110257\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorine Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022113924000186\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorine Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022113924000186","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

Al2O3 在通过脱氢氟化或 F/Cl 交换实现强效温室气体氢氟碳化合物的资源化利用方面具有很高的活性。然而,它在腐蚀性 HF 环境下会发生完全氟化,导致 F-Al-O 活性位点彻底氟化为 F-Al-F,并伴有严重的碳沉积。在这项工作中,我们通过在高温(800 °C)下处理 Al2O3/SiC,成功地将 Al2O3 限制在 SiC 中(Al2O3@SiC)。结果表明,与简单负载的 Al2O3(Al2O3/SiC)不同,在高温处理过程中,Al2O3 和 SiC 之间发生了反应,从而产生了约束效应。然后,在相互作用的作用下,所需的 F-Al-O 物种可以稳定在 SiC 表面。而对于 Al2O3/SiC 而言,在相同的反应条件下,它会彻底变成 AlF3,导致 CH3CHF2 脱氢氟化过程中的稳定性变差。此外,5 %Al2O3@SiC 的反应速率比传统 AlF3 高出近 4 倍。在合适的路易斯酸强度的促进下,Al2O3@SiC 上形成的碳沉积更少。因此,在 F-Al-O 与稳定的 SiC 之间构建强相互作用为稳定不稳定的活性中心提供了一种潜在的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stabilizing F-Al-O active center via confinement of Al2O3 in SiC framework for conversion of 1,1-difluoroethane greenhouse gas

Stabilizing F-Al-O active center via confinement of Al2O3 in SiC framework for conversion of 1,1-difluoroethane greenhouse gas

Al2O3 exhibits high activity for the resource utilization of potent greenhouse gases, hydrofluorocarbons via dehydrofluorination or F/Cl exchange. However, it experiences completely fluorination under corrosive HF environment, leading to thorough fluorination of F-Al-O active site into F-Al-F, accompanied with serious carbon deposition. In this work, we successfully confined Al2O3 in SiC (Al2O3@SiC) via treating Al2O3/SiC under high temperatures (>800 °C). The results showed that different with simple loaded Al2O3(Al2O3/SiC), during high temperature treatment, reaction between Al2O3 and SiC occurred, leading to the confinement effect. Then, contributed by the interaction, desired F-Al-O species could be stabilized on the surface of SiC. While for Al2O3/SiC, it thoroughly turned into AlF3 under identical reactive conditions, leading to inferior stability during CH3CHF2 dehydrofluorination. Furthermore, the reaction rate of 5 %Al2O3@SiC is nearly up to 4 folds higher than that of traditional AlF3. Facilitated by the suitable Lewis acid intensity, less carbon deposition formed on Al2O3@SiC. Thus, constructing strong interaction between F-Al-O and stable SiC provides a potential strategy to stabilize unstable active centers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluorine Chemistry
Journal of Fluorine Chemistry 化学-无机化学与核化学
CiteScore
3.80
自引率
10.50%
发文量
99
审稿时长
33 days
期刊介绍: The Journal of Fluorine Chemistry contains reviews, original papers and short communications. The journal covers all aspects of pure and applied research on the chemistry as well as on the applications of fluorine, and of compounds or materials where fluorine exercises significant effects. This can include all chemistry research areas (inorganic, organic, organometallic, macromolecular and physical chemistry) but also includes papers on biological/biochemical related aspects of Fluorine chemistry as well as medicinal, agrochemical and pharmacological research. The Journal of Fluorine Chemistry also publishes environmental and industrial papers dealing with aspects of Fluorine chemistry on energy and material sciences. Preparative and physico-chemical investigations as well as theoretical, structural and mechanistic aspects are covered. The Journal, however, does not accept work of purely routine nature. For reviews and special issues on particular topics of fluorine chemistry or from selected symposia, please contact the Regional Editors for further details.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信