{"title":"参与山茱萸铱苷合成的关键酶基因 CoGPPS 的克隆和表达分析","authors":"Jiaxi Chen, Xinjie Tan, Guangyang Guo, Panpan Wang, Hongxiao Zhang, Shufang Lv, Huawei Xu, Dianyun Hou","doi":"10.1089/dna.2023.0335","DOIUrl":null,"url":null,"abstract":"<p><p>Cornus iridoid glycosides (CIGs), including loganin and morroniside, are the main active components of <i>Cornus officinalis</i>. As one of the key enzymes in the biosynthesis of CIGs, geranyl pyrophosphate synthase (GPPS) catalyzes the formation of geranyl pyrophosphate, which is the direct precursor of CIGs. In this study, the <i>C. officinalis</i> geranyl pyrophosphate synthase (CoGPPS) sequence was cloned from <i>C. officinalis</i> and analyzed. The cDNA sequence of the <i>CoGPPS</i> gene was 915 bp (GenBank No. OR725699). Phylogenetic analysis showed that CoGPPS was closely related to the GPPS sequence of <i>Actinidia chinensis</i> and <i>Camellia sinensis</i>, but relatively distantly related to <i>Paeonia lactiflora</i> and <i>Tripterygium wilfordii</i>. Results from the quantitative real-time PCR showed the spatiotemporal expression pattern of <i>CoGPPS</i>; that is, <i>CoGPPS</i> was specifically expressed in the fruits. Subcellular localization assay proved that CoGPPS was specifically found in chloroplasts. Loganin and morroniside contents in the tissues were detected by high-performance liquid chromatography, and both compounds were found to be at higher levels in the fruits than in leaves. Thus, this study laid the foundation for further studies on the synthetic pathway of CIGs.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":"125-131"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cloning and Expression Analysis of Key Enzyme Gene <i>CoGPPS</i> Involved in Iridoid Glycoside Synthesis in <i>Cornus officinalis</i>.\",\"authors\":\"Jiaxi Chen, Xinjie Tan, Guangyang Guo, Panpan Wang, Hongxiao Zhang, Shufang Lv, Huawei Xu, Dianyun Hou\",\"doi\":\"10.1089/dna.2023.0335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cornus iridoid glycosides (CIGs), including loganin and morroniside, are the main active components of <i>Cornus officinalis</i>. As one of the key enzymes in the biosynthesis of CIGs, geranyl pyrophosphate synthase (GPPS) catalyzes the formation of geranyl pyrophosphate, which is the direct precursor of CIGs. In this study, the <i>C. officinalis</i> geranyl pyrophosphate synthase (CoGPPS) sequence was cloned from <i>C. officinalis</i> and analyzed. The cDNA sequence of the <i>CoGPPS</i> gene was 915 bp (GenBank No. OR725699). Phylogenetic analysis showed that CoGPPS was closely related to the GPPS sequence of <i>Actinidia chinensis</i> and <i>Camellia sinensis</i>, but relatively distantly related to <i>Paeonia lactiflora</i> and <i>Tripterygium wilfordii</i>. Results from the quantitative real-time PCR showed the spatiotemporal expression pattern of <i>CoGPPS</i>; that is, <i>CoGPPS</i> was specifically expressed in the fruits. Subcellular localization assay proved that CoGPPS was specifically found in chloroplasts. Loganin and morroniside contents in the tissues were detected by high-performance liquid chromatography, and both compounds were found to be at higher levels in the fruits than in leaves. Thus, this study laid the foundation for further studies on the synthetic pathway of CIGs.</p>\",\"PeriodicalId\":93981,\"journal\":{\"name\":\"DNA and cell biology\",\"volume\":\" \",\"pages\":\"125-131\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA and cell biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/dna.2023.0335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/dna.2023.0335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Cloning and Expression Analysis of Key Enzyme Gene CoGPPS Involved in Iridoid Glycoside Synthesis in Cornus officinalis.
Cornus iridoid glycosides (CIGs), including loganin and morroniside, are the main active components of Cornus officinalis. As one of the key enzymes in the biosynthesis of CIGs, geranyl pyrophosphate synthase (GPPS) catalyzes the formation of geranyl pyrophosphate, which is the direct precursor of CIGs. In this study, the C. officinalis geranyl pyrophosphate synthase (CoGPPS) sequence was cloned from C. officinalis and analyzed. The cDNA sequence of the CoGPPS gene was 915 bp (GenBank No. OR725699). Phylogenetic analysis showed that CoGPPS was closely related to the GPPS sequence of Actinidia chinensis and Camellia sinensis, but relatively distantly related to Paeonia lactiflora and Tripterygium wilfordii. Results from the quantitative real-time PCR showed the spatiotemporal expression pattern of CoGPPS; that is, CoGPPS was specifically expressed in the fruits. Subcellular localization assay proved that CoGPPS was specifically found in chloroplasts. Loganin and morroniside contents in the tissues were detected by high-performance liquid chromatography, and both compounds were found to be at higher levels in the fruits than in leaves. Thus, this study laid the foundation for further studies on the synthetic pathway of CIGs.