T I Burgess, J Edwards, A Drenth, T Massenbauer, J Cunnington, R Mostowfizadeh-Ghalamfarsa, Q Dinh, E C Y Liew, D White, P Scott, P A Barber, E O'Gara, J Ciampini, K L McDougall, Y P Tan
{"title":"Phytophthora 在澳大利亚的现状。","authors":"T I Burgess, J Edwards, A Drenth, T Massenbauer, J Cunnington, R Mostowfizadeh-Ghalamfarsa, Q Dinh, E C Y Liew, D White, P Scott, P A Barber, E O'Gara, J Ciampini, K L McDougall, Y P Tan","doi":"10.3767/persoonia.2023.47.05","DOIUrl":null,"url":null,"abstract":"<p><p>Among the most economically relevant and environmentally devastating diseases globally are those caused by <i>Phytophthora</i> species. In Australia, production losses in agriculture and forestry result from several well-known cosmopolitan <i>Phytophthora</i> species and infestation of natural ecosystems by <i>Phytophthora cinnamomi</i> have caused irretrievable loss to biodiversity especially in proteaceous dominated heathlands. For this review, all available records of <i>Phytophthora</i> in Australia were collated and curated, resulting in a database of 7 869 records, of which 2 957 have associated molecular data. Australian databases hold records for 99 species, of which 20 are undescribed. Eight species have no records linked to molecular data, and their presence in Australia is considered doubtful. The 99 species reside in 10 of the 12 clades recognised within the complete phylogeny of <i>Phytophthora.</i> The review includes discussion on each of these species' status and additional information provided for another 29 species of concern. The first species reported in Australia in 1900 was <i>Phytophthora infestans.</i> By 2000, 27 species were known, predominantly from agriculture. The significant increase in species reported in the subsequent 20 years has coincided with extensive surveys in natural ecosystems coupled with molecular taxonomy and the recognition of numerous new phylogenetically distinct but morphologically similar species. Routine and targeted surveys within Australian natural ecosystems have resulted in the description of 27 species since 2009. Due to the new species descriptions over the last 20 years, many older records have been reclassified based on molecular identification. The distribution of records is skewed toward regions with considerable activity in high productivity agriculture, horticulture and forestry, and native vegetation at risk from <i>P. cinnamomi.</i> Native and exotic hosts of different <i>Phytophthora</i> species are found throughout the phylogeny; however, species from clades 1, 7 and 8 are more likely to be associated with exotic hosts. One of the most difficult challenges to overcome when establishing a pest status is a lack of reliable data on the current state of a species in any given country or location. The database compiled here for Australia and the information provided for each species overcomes this challenge. This review will aid federal and state governments in risk assessments and trade negotiations by providing a comprehensive resource on the current status of <i>Phytophthora</i> species in Australia. <b>Citation:</b> Burgess TI, Edwards J, Drenth A, et al. 2021. Current status of Phytophthora in Australia. Persoonia 47: 151-177. https://doi.org/10.3767/persoonia.2021.47.05.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"47 ","pages":"151-177"},"PeriodicalIF":9.5000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current status of <i>Phytophthora</i> in Australia.\",\"authors\":\"T I Burgess, J Edwards, A Drenth, T Massenbauer, J Cunnington, R Mostowfizadeh-Ghalamfarsa, Q Dinh, E C Y Liew, D White, P Scott, P A Barber, E O'Gara, J Ciampini, K L McDougall, Y P Tan\",\"doi\":\"10.3767/persoonia.2023.47.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Among the most economically relevant and environmentally devastating diseases globally are those caused by <i>Phytophthora</i> species. In Australia, production losses in agriculture and forestry result from several well-known cosmopolitan <i>Phytophthora</i> species and infestation of natural ecosystems by <i>Phytophthora cinnamomi</i> have caused irretrievable loss to biodiversity especially in proteaceous dominated heathlands. For this review, all available records of <i>Phytophthora</i> in Australia were collated and curated, resulting in a database of 7 869 records, of which 2 957 have associated molecular data. Australian databases hold records for 99 species, of which 20 are undescribed. Eight species have no records linked to molecular data, and their presence in Australia is considered doubtful. The 99 species reside in 10 of the 12 clades recognised within the complete phylogeny of <i>Phytophthora.</i> The review includes discussion on each of these species' status and additional information provided for another 29 species of concern. The first species reported in Australia in 1900 was <i>Phytophthora infestans.</i> By 2000, 27 species were known, predominantly from agriculture. The significant increase in species reported in the subsequent 20 years has coincided with extensive surveys in natural ecosystems coupled with molecular taxonomy and the recognition of numerous new phylogenetically distinct but morphologically similar species. Routine and targeted surveys within Australian natural ecosystems have resulted in the description of 27 species since 2009. Due to the new species descriptions over the last 20 years, many older records have been reclassified based on molecular identification. The distribution of records is skewed toward regions with considerable activity in high productivity agriculture, horticulture and forestry, and native vegetation at risk from <i>P. cinnamomi.</i> Native and exotic hosts of different <i>Phytophthora</i> species are found throughout the phylogeny; however, species from clades 1, 7 and 8 are more likely to be associated with exotic hosts. One of the most difficult challenges to overcome when establishing a pest status is a lack of reliable data on the current state of a species in any given country or location. The database compiled here for Australia and the information provided for each species overcomes this challenge. This review will aid federal and state governments in risk assessments and trade negotiations by providing a comprehensive resource on the current status of <i>Phytophthora</i> species in Australia. <b>Citation:</b> Burgess TI, Edwards J, Drenth A, et al. 2021. Current status of Phytophthora in Australia. Persoonia 47: 151-177. https://doi.org/10.3767/persoonia.2021.47.05.</p>\",\"PeriodicalId\":20014,\"journal\":{\"name\":\"Persoonia\",\"volume\":\"47 \",\"pages\":\"151-177\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Persoonia\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3767/persoonia.2023.47.05\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Persoonia","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3767/persoonia.2023.47.05","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
Among the most economically relevant and environmentally devastating diseases globally are those caused by Phytophthora species. In Australia, production losses in agriculture and forestry result from several well-known cosmopolitan Phytophthora species and infestation of natural ecosystems by Phytophthora cinnamomi have caused irretrievable loss to biodiversity especially in proteaceous dominated heathlands. For this review, all available records of Phytophthora in Australia were collated and curated, resulting in a database of 7 869 records, of which 2 957 have associated molecular data. Australian databases hold records for 99 species, of which 20 are undescribed. Eight species have no records linked to molecular data, and their presence in Australia is considered doubtful. The 99 species reside in 10 of the 12 clades recognised within the complete phylogeny of Phytophthora. The review includes discussion on each of these species' status and additional information provided for another 29 species of concern. The first species reported in Australia in 1900 was Phytophthora infestans. By 2000, 27 species were known, predominantly from agriculture. The significant increase in species reported in the subsequent 20 years has coincided with extensive surveys in natural ecosystems coupled with molecular taxonomy and the recognition of numerous new phylogenetically distinct but morphologically similar species. Routine and targeted surveys within Australian natural ecosystems have resulted in the description of 27 species since 2009. Due to the new species descriptions over the last 20 years, many older records have been reclassified based on molecular identification. The distribution of records is skewed toward regions with considerable activity in high productivity agriculture, horticulture and forestry, and native vegetation at risk from P. cinnamomi. Native and exotic hosts of different Phytophthora species are found throughout the phylogeny; however, species from clades 1, 7 and 8 are more likely to be associated with exotic hosts. One of the most difficult challenges to overcome when establishing a pest status is a lack of reliable data on the current state of a species in any given country or location. The database compiled here for Australia and the information provided for each species overcomes this challenge. This review will aid federal and state governments in risk assessments and trade negotiations by providing a comprehensive resource on the current status of Phytophthora species in Australia. Citation: Burgess TI, Edwards J, Drenth A, et al. 2021. Current status of Phytophthora in Australia. Persoonia 47: 151-177. https://doi.org/10.3767/persoonia.2021.47.05.
期刊介绍:
Persoonia aspires to publish papers focusing on the molecular systematics and evolution of fungi. Additionally, it seeks to advance fungal taxonomy by employing a polythetic approach to elucidate the genuine phylogeny and relationships within the kingdom Fungi. The journal is dedicated to disseminating high-quality papers that unravel both known and novel fungal taxa at the DNA level. Moreover, it endeavors to provide fresh insights into evolutionary processes and relationships. The scope of papers considered encompasses research articles, along with topical and book reviews.