Abigail Illand, Pierre Jouchet, Emmanuel Fort, Sandrine Lévêque-Fort
{"title":"基于 DMD 的调制定位显微镜的灵活实施。","authors":"Abigail Illand, Pierre Jouchet, Emmanuel Fort, Sandrine Lévêque-Fort","doi":"10.1111/jmi.13274","DOIUrl":null,"url":null,"abstract":"<p>Localisation microscopy of individual molecules allows one to bypass the diffraction limit, revealing cellular organisation on a nanometric scale. This method, which relies on spatial analysis of the signal emitted by molecules, is often limited to the observation of biological objects at shallow depths, or with very few aberrations. The introduction of a temporal parameter into the localisation process through a time-modulated excitation was recently proposed to address these limitations. This method, called ModLoc, is demonstrated here with an alternative flexible strategy. In this implementation, to encode the time-modulated excitation a digital micromirror device (DMD) is used in combination with a fast demodulation approach, and provides a twofold enhancement in localisation precision.</p><p><b>Layout</b>: Nowadays, we can use an optical microscope to observe how proteins are organised in 3D within a cell at the nanoscale. By carefully controlling the emission of molecules in both space and time, we can overcome the limitations set by the diffraction limit. This allows us to pinpoint the exact location of molecules more precisely. However, the usual spatial analysis method limits observations to shallow depths or causing low distortion of optical waves.</p><p>To overcome these restrictions, a recent approach introduces a temporal element to the localisation process. This involves changing the illumination over time to enhance the precision of localisation. This method, known as ModLoc, is showcased here using a flexible and alternative strategy. In this setup, a matrix of micrometric mirrors, working together with a fast demodulation optical module, is used to encode and decode the time-modulated information. This combination results in a twofold improvement in localisation precision.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible implementation of modulated localisation microscopy based on DMD\",\"authors\":\"Abigail Illand, Pierre Jouchet, Emmanuel Fort, Sandrine Lévêque-Fort\",\"doi\":\"10.1111/jmi.13274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Localisation microscopy of individual molecules allows one to bypass the diffraction limit, revealing cellular organisation on a nanometric scale. This method, which relies on spatial analysis of the signal emitted by molecules, is often limited to the observation of biological objects at shallow depths, or with very few aberrations. The introduction of a temporal parameter into the localisation process through a time-modulated excitation was recently proposed to address these limitations. This method, called ModLoc, is demonstrated here with an alternative flexible strategy. In this implementation, to encode the time-modulated excitation a digital micromirror device (DMD) is used in combination with a fast demodulation approach, and provides a twofold enhancement in localisation precision.</p><p><b>Layout</b>: Nowadays, we can use an optical microscope to observe how proteins are organised in 3D within a cell at the nanoscale. By carefully controlling the emission of molecules in both space and time, we can overcome the limitations set by the diffraction limit. This allows us to pinpoint the exact location of molecules more precisely. However, the usual spatial analysis method limits observations to shallow depths or causing low distortion of optical waves.</p><p>To overcome these restrictions, a recent approach introduces a temporal element to the localisation process. This involves changing the illumination over time to enhance the precision of localisation. This method, known as ModLoc, is showcased here using a flexible and alternative strategy. In this setup, a matrix of micrometric mirrors, working together with a fast demodulation optical module, is used to encode and decode the time-modulated information. This combination results in a twofold improvement in localisation precision.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13274\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13274","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Flexible implementation of modulated localisation microscopy based on DMD
Localisation microscopy of individual molecules allows one to bypass the diffraction limit, revealing cellular organisation on a nanometric scale. This method, which relies on spatial analysis of the signal emitted by molecules, is often limited to the observation of biological objects at shallow depths, or with very few aberrations. The introduction of a temporal parameter into the localisation process through a time-modulated excitation was recently proposed to address these limitations. This method, called ModLoc, is demonstrated here with an alternative flexible strategy. In this implementation, to encode the time-modulated excitation a digital micromirror device (DMD) is used in combination with a fast demodulation approach, and provides a twofold enhancement in localisation precision.
Layout: Nowadays, we can use an optical microscope to observe how proteins are organised in 3D within a cell at the nanoscale. By carefully controlling the emission of molecules in both space and time, we can overcome the limitations set by the diffraction limit. This allows us to pinpoint the exact location of molecules more precisely. However, the usual spatial analysis method limits observations to shallow depths or causing low distortion of optical waves.
To overcome these restrictions, a recent approach introduces a temporal element to the localisation process. This involves changing the illumination over time to enhance the precision of localisation. This method, known as ModLoc, is showcased here using a flexible and alternative strategy. In this setup, a matrix of micrometric mirrors, working together with a fast demodulation optical module, is used to encode and decode the time-modulated information. This combination results in a twofold improvement in localisation precision.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.