创新利用超宽视野眼底图像和深度学习算法筛查高风险后极性白内障。

IF 2.6 3区 医学 Q2 OPHTHALMOLOGY
Elsa L C Mai, Bing-Hong Chen, Tai-Yuan Su
{"title":"创新利用超宽视野眼底图像和深度学习算法筛查高风险后极性白内障。","authors":"Elsa L C Mai, Bing-Hong Chen, Tai-Yuan Su","doi":"10.1097/j.jcrs.0000000000001419","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To test a cataract shadow projection theory and validate it by developing a deep learning algorithm that enables automatic and stable posterior polar cataract (PPC) screening using fundus images.</p><p><strong>Setting: </strong>Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei, Taiwan.</p><p><strong>Design: </strong>Retrospective chart review.</p><p><strong>Methods: </strong>A deep learning algorithm to automatically detect PPC was developed based on the cataract shadow projection theory. Retrospective data (n = 546) with ultra-wide field fundus images were collected, and various model architectures and fields of view were tested for optimization.</p><p><strong>Results: </strong>The final model achieved 80% overall accuracy, with 88.2% sensitivity and 93.4% specificity in PPC screening on a clinical validation dataset (n = 103).</p><p><strong>Conclusions: </strong>This study established a significant relationship between PPC and the projected shadow, which may help surgeons to identify potential PPC risks preoperatively and reduce the incidence of posterior capsular rupture during cataract surgery.</p>","PeriodicalId":15214,"journal":{"name":"Journal of cataract and refractive surgery","volume":" ","pages":"618-623"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146186/pdf/","citationCount":"0","resultStr":"{\"title\":\"Innovative utilization of ultra-wide field fundus images and deep learning algorithms for screening high-risk posterior polar cataract.\",\"authors\":\"Elsa L C Mai, Bing-Hong Chen, Tai-Yuan Su\",\"doi\":\"10.1097/j.jcrs.0000000000001419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To test a cataract shadow projection theory and validate it by developing a deep learning algorithm that enables automatic and stable posterior polar cataract (PPC) screening using fundus images.</p><p><strong>Setting: </strong>Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei, Taiwan.</p><p><strong>Design: </strong>Retrospective chart review.</p><p><strong>Methods: </strong>A deep learning algorithm to automatically detect PPC was developed based on the cataract shadow projection theory. Retrospective data (n = 546) with ultra-wide field fundus images were collected, and various model architectures and fields of view were tested for optimization.</p><p><strong>Results: </strong>The final model achieved 80% overall accuracy, with 88.2% sensitivity and 93.4% specificity in PPC screening on a clinical validation dataset (n = 103).</p><p><strong>Conclusions: </strong>This study established a significant relationship between PPC and the projected shadow, which may help surgeons to identify potential PPC risks preoperatively and reduce the incidence of posterior capsular rupture during cataract surgery.</p>\",\"PeriodicalId\":15214,\"journal\":{\"name\":\"Journal of cataract and refractive surgery\",\"volume\":\" \",\"pages\":\"618-623\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146186/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cataract and refractive surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/j.jcrs.0000000000001419\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cataract and refractive surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/j.jcrs.0000000000001419","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:后囊破裂(PCR)是白内障手术中出现的一种严重并发症。后极性白内障(PPC)患者是 PCR 的高危人群。尽管散瞳剂有明显的副作用,但它能在裂隙灯检查中提高白内障后方的能见度,有助于识别 PPC。超宽视场(UWF)视网膜成像系统无需借助眼药水,就能在眼底图像中看到白内障在视网膜上的投影(阴影)。PPC 与投影阴影之间的关系仍有待探索。我们假设了一种白内障-阴影-投影理论,然后通过开发一种深度学习算法对其进行了验证,该算法可使用眼底图像自动、稳定地筛查白内障:数据来自远东纪念医院眼科,并获得了医院机构审查委员会的许可:设计:回顾性病历审查数据,包括 UWF 眼底图像:我们根据白内障-阴影-投影理论开发了一种深度学习算法,用于自动检测白内障。我们收集了带有 UWF 眼底图像的回顾性数据(n=546),并对各种模型架构和视场(FOV)进行了优化测试:结果:在临床验证数据集(n=103)上,最终模型的总体准确率达到 80%,在 PPC 筛查中的灵敏度为 88.2%,特异度为 93.4%:这项研究确定了PPC与投影阴影之间的重要关系,使外科医生能够在术前识别潜在的PPC风险,降低白内障手术中后囊破裂的发生率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Innovative utilization of ultra-wide field fundus images and deep learning algorithms for screening high-risk posterior polar cataract.

Purpose: To test a cataract shadow projection theory and validate it by developing a deep learning algorithm that enables automatic and stable posterior polar cataract (PPC) screening using fundus images.

Setting: Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei, Taiwan.

Design: Retrospective chart review.

Methods: A deep learning algorithm to automatically detect PPC was developed based on the cataract shadow projection theory. Retrospective data (n = 546) with ultra-wide field fundus images were collected, and various model architectures and fields of view were tested for optimization.

Results: The final model achieved 80% overall accuracy, with 88.2% sensitivity and 93.4% specificity in PPC screening on a clinical validation dataset (n = 103).

Conclusions: This study established a significant relationship between PPC and the projected shadow, which may help surgeons to identify potential PPC risks preoperatively and reduce the incidence of posterior capsular rupture during cataract surgery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
14.30%
发文量
259
审稿时长
8.5 weeks
期刊介绍: The Journal of Cataract & Refractive Surgery (JCRS), a preeminent peer-reviewed monthly ophthalmology publication, is the official journal of the American Society of Cataract and Refractive Surgery (ASCRS) and the European Society of Cataract and Refractive Surgeons (ESCRS). JCRS publishes high quality articles on all aspects of anterior segment surgery. In addition to original clinical studies, the journal features a consultation section, practical techniques, important cases, and reviews as well as basic science articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信