{"title":"布洛芬降解产物对布洛芬与人血清白蛋白相互作用影响的光谱分析","authors":"Anna Ploch-Jankowska","doi":"10.2174/0113892037284277240126094716","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are one of the most commonly used groups of medicinal compounds in the world. The wide access to NSAIDs and the various ways of storing them due to their easy accessibility often entail the problem with the stability and durability resulting from the exposure of drugs to external factors. The aim of the research was to evaluate <i>in vitro</i> the mechanism of competition between ibuprofen (IBU) and its degradation products, i.e., 4'-isobutylacetophenone (IBAP) and (2RS)-2-(4- formylphenyl)propionic acid (FPPA) during transport in a complex with fatted (HSA) and defatted (dHSA) human serum albumin.</p><p><strong>Methods: </strong>The research was carried out using spectroscopic techniques, such as spectrophotometry, infrared spectroscopy and nuclear magnetic resonance spectroscopy.</p><p><strong>Results: </strong>The comprehensive application of spectroscopic techniques allowed, among others, for the determination of the binding constant, the number of classes of binding sites and the cooperativeness constant of the analyzed systems IBU-(d)HSA, IBU-(d)HSA-FPPA, IBU-(d)HSA-IBAP; the determination of the effect of ibuprofen and its degradation products on the secondary structure of albumin; identification and assessment of interactions between ligand and albumin; assessment of the impact of the presence of fatty acids in the structure of albumin and the measurement temperature on the binding of IBU, IBAP and FPPA to (d)HSA.</p><p><strong>Conclusion: </strong>The conducted research allowed us to conclude that the presence of ibuprofen degradation products and the increase in their concentration significantly affect the formation of the IBU-albumin complex and thus, the value of the association constant of the drug, changing the concentration of its free fraction in the blood plasma. It was also found that the presence of an ibuprofen degradation product in a complex with albumin affects its secondary structure.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectroscopic Analysis of the Effect of Ibuprofen Degradation Products on the Interaction between Ibuprofen and Human Serum Albumin.\",\"authors\":\"Anna Ploch-Jankowska\",\"doi\":\"10.2174/0113892037284277240126094716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are one of the most commonly used groups of medicinal compounds in the world. The wide access to NSAIDs and the various ways of storing them due to their easy accessibility often entail the problem with the stability and durability resulting from the exposure of drugs to external factors. The aim of the research was to evaluate <i>in vitro</i> the mechanism of competition between ibuprofen (IBU) and its degradation products, i.e., 4'-isobutylacetophenone (IBAP) and (2RS)-2-(4- formylphenyl)propionic acid (FPPA) during transport in a complex with fatted (HSA) and defatted (dHSA) human serum albumin.</p><p><strong>Methods: </strong>The research was carried out using spectroscopic techniques, such as spectrophotometry, infrared spectroscopy and nuclear magnetic resonance spectroscopy.</p><p><strong>Results: </strong>The comprehensive application of spectroscopic techniques allowed, among others, for the determination of the binding constant, the number of classes of binding sites and the cooperativeness constant of the analyzed systems IBU-(d)HSA, IBU-(d)HSA-FPPA, IBU-(d)HSA-IBAP; the determination of the effect of ibuprofen and its degradation products on the secondary structure of albumin; identification and assessment of interactions between ligand and albumin; assessment of the impact of the presence of fatty acids in the structure of albumin and the measurement temperature on the binding of IBU, IBAP and FPPA to (d)HSA.</p><p><strong>Conclusion: </strong>The conducted research allowed us to conclude that the presence of ibuprofen degradation products and the increase in their concentration significantly affect the formation of the IBU-albumin complex and thus, the value of the association constant of the drug, changing the concentration of its free fraction in the blood plasma. It was also found that the presence of an ibuprofen degradation product in a complex with albumin affects its secondary structure.</p>\",\"PeriodicalId\":10859,\"journal\":{\"name\":\"Current protein & peptide science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protein & peptide science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892037284277240126094716\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037284277240126094716","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Spectroscopic Analysis of the Effect of Ibuprofen Degradation Products on the Interaction between Ibuprofen and Human Serum Albumin.
Background: Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are one of the most commonly used groups of medicinal compounds in the world. The wide access to NSAIDs and the various ways of storing them due to their easy accessibility often entail the problem with the stability and durability resulting from the exposure of drugs to external factors. The aim of the research was to evaluate in vitro the mechanism of competition between ibuprofen (IBU) and its degradation products, i.e., 4'-isobutylacetophenone (IBAP) and (2RS)-2-(4- formylphenyl)propionic acid (FPPA) during transport in a complex with fatted (HSA) and defatted (dHSA) human serum albumin.
Methods: The research was carried out using spectroscopic techniques, such as spectrophotometry, infrared spectroscopy and nuclear magnetic resonance spectroscopy.
Results: The comprehensive application of spectroscopic techniques allowed, among others, for the determination of the binding constant, the number of classes of binding sites and the cooperativeness constant of the analyzed systems IBU-(d)HSA, IBU-(d)HSA-FPPA, IBU-(d)HSA-IBAP; the determination of the effect of ibuprofen and its degradation products on the secondary structure of albumin; identification and assessment of interactions between ligand and albumin; assessment of the impact of the presence of fatty acids in the structure of albumin and the measurement temperature on the binding of IBU, IBAP and FPPA to (d)HSA.
Conclusion: The conducted research allowed us to conclude that the presence of ibuprofen degradation products and the increase in their concentration significantly affect the formation of the IBU-albumin complex and thus, the value of the association constant of the drug, changing the concentration of its free fraction in the blood plasma. It was also found that the presence of an ibuprofen degradation product in a complex with albumin affects its secondary structure.
期刊介绍:
Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.