{"title":"代谢紊乱中肠道微生物群-miRNA 相互作用的分子机制。","authors":"P Prukpitikul, J Sirivarasai, N Sutjarit","doi":"10.1163/18762891-20230103","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic disorders are a major global health problem. Gut microbiota not only affect host metabolism through metabolites, inflammatory processes, and microbial-derived extracellular vesicles, but they also modulate the host microRNA, which may impact the host metabolism. Hence, the underlying mechanisms between gut microbiota-microRNA interaction can potentially be a novel alternative strategy for treating metabolic disorders. This review aims to give an update on the latest evidence and current knowledge of the underlying mechanisms of gut microbiota-miRNA interaction, focusing on metabolic homeostasis. Gut microbiota mainly communicate with host microRNA through lipopolysaccharide and secondary microbial metabolites. These signalling messengers circulate around the metabolic organs and modify gene expression through microRNA interference. Interestingly, while intestinal microRNAs play a vital role in both intestinal barrier and gut microbiota homeostasis, the presence of gut microbiota is also required for the proper functioning of intestinal microRNAs, suggesting a cooperative mechanism in intestinal health. Although the correlations between gut microbiota and microRNA have been observed in both mice and humans, a causal relationship should be confirmed. Moreover, further investigation is needed to provide more evidence of a gut microbiota-microRNA interaction to support the possibility of using that axis as a novel therapeutic target to treat metabolic disorders.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":"15 1","pages":"83-96"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The molecular mechanisms underlying gut microbiota-miRNA interaction in metabolic disorders.\",\"authors\":\"P Prukpitikul, J Sirivarasai, N Sutjarit\",\"doi\":\"10.1163/18762891-20230103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic disorders are a major global health problem. Gut microbiota not only affect host metabolism through metabolites, inflammatory processes, and microbial-derived extracellular vesicles, but they also modulate the host microRNA, which may impact the host metabolism. Hence, the underlying mechanisms between gut microbiota-microRNA interaction can potentially be a novel alternative strategy for treating metabolic disorders. This review aims to give an update on the latest evidence and current knowledge of the underlying mechanisms of gut microbiota-miRNA interaction, focusing on metabolic homeostasis. Gut microbiota mainly communicate with host microRNA through lipopolysaccharide and secondary microbial metabolites. These signalling messengers circulate around the metabolic organs and modify gene expression through microRNA interference. Interestingly, while intestinal microRNAs play a vital role in both intestinal barrier and gut microbiota homeostasis, the presence of gut microbiota is also required for the proper functioning of intestinal microRNAs, suggesting a cooperative mechanism in intestinal health. Although the correlations between gut microbiota and microRNA have been observed in both mice and humans, a causal relationship should be confirmed. Moreover, further investigation is needed to provide more evidence of a gut microbiota-microRNA interaction to support the possibility of using that axis as a novel therapeutic target to treat metabolic disorders.</p>\",\"PeriodicalId\":8834,\"journal\":{\"name\":\"Beneficial microbes\",\"volume\":\"15 1\",\"pages\":\"83-96\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beneficial microbes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1163/18762891-20230103\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-20230103","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
The molecular mechanisms underlying gut microbiota-miRNA interaction in metabolic disorders.
Metabolic disorders are a major global health problem. Gut microbiota not only affect host metabolism through metabolites, inflammatory processes, and microbial-derived extracellular vesicles, but they also modulate the host microRNA, which may impact the host metabolism. Hence, the underlying mechanisms between gut microbiota-microRNA interaction can potentially be a novel alternative strategy for treating metabolic disorders. This review aims to give an update on the latest evidence and current knowledge of the underlying mechanisms of gut microbiota-miRNA interaction, focusing on metabolic homeostasis. Gut microbiota mainly communicate with host microRNA through lipopolysaccharide and secondary microbial metabolites. These signalling messengers circulate around the metabolic organs and modify gene expression through microRNA interference. Interestingly, while intestinal microRNAs play a vital role in both intestinal barrier and gut microbiota homeostasis, the presence of gut microbiota is also required for the proper functioning of intestinal microRNAs, suggesting a cooperative mechanism in intestinal health. Although the correlations between gut microbiota and microRNA have been observed in both mice and humans, a causal relationship should be confirmed. Moreover, further investigation is needed to provide more evidence of a gut microbiota-microRNA interaction to support the possibility of using that axis as a novel therapeutic target to treat metabolic disorders.
期刊介绍:
Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators.
The journal will have five major sections:
* Food, nutrition and health
* Animal nutrition
* Processing and application
* Regulatory & safety aspects
* Medical & health applications
In these sections, topics dealt with by Beneficial Microbes include:
* Worldwide safety and regulatory issues
* Human and animal nutrition and health effects
* Latest discoveries in mechanistic studies and screening methods to unravel mode of action
* Host physiology related to allergy, inflammation, obesity, etc.
* Trends in application of (meta)genomics, proteomics and metabolomics
* New developments in how processing optimizes pro- & prebiotics for application
* Bacterial physiology related to health benefits