生命是不确定的:生物体和更高层次生物组织固有的变异性。

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Astrobiology Pub Date : 2024-03-01 Epub Date: 2024-02-13 DOI:10.1089/ast.2023.0094
Joseph W Bull
{"title":"生命是不确定的:生物体和更高层次生物组织固有的变异性。","authors":"Joseph W Bull","doi":"10.1089/ast.2023.0094","DOIUrl":null,"url":null,"abstract":"<p><p>Organisms act stochastically. A not uncommon view in the ecological literature is that this is mainly due to the observer having insufficient information or a stochastic environment-and not partly because organisms themselves respond with inherent unpredictability. In this study, I compile the evidence that contradicts that view. Organisms generate uncertainty internally, which results in irreducible stochastic responses. I consider why: for instance, stochastic responses are associated with greater adaptability to changing environments and resource availability. Over longer timescales, biologically generated uncertainty influences behavior, evolution, and macroecological processes. Indeed, it could be stated that organisms are systems <i>defined</i> by the internal generation, magnification, and record-keeping of uncertainty as inputs to responses. Important practical implications arise if organisms can indeed be defined by an association with specific classes of inherent uncertainty: not least that isolating those signatures then provides a potential means for detecting life, for considering the forms that life could theoretically take, and for exploring the wider limits to how life might become distributed. These are all fundamental goals in astrobiology.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Life Is Uncertain: Inherent Variability Exhibited by Organisms, and at Higher Levels of Biological Organization.\",\"authors\":\"Joseph W Bull\",\"doi\":\"10.1089/ast.2023.0094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organisms act stochastically. A not uncommon view in the ecological literature is that this is mainly due to the observer having insufficient information or a stochastic environment-and not partly because organisms themselves respond with inherent unpredictability. In this study, I compile the evidence that contradicts that view. Organisms generate uncertainty internally, which results in irreducible stochastic responses. I consider why: for instance, stochastic responses are associated with greater adaptability to changing environments and resource availability. Over longer timescales, biologically generated uncertainty influences behavior, evolution, and macroecological processes. Indeed, it could be stated that organisms are systems <i>defined</i> by the internal generation, magnification, and record-keeping of uncertainty as inputs to responses. Important practical implications arise if organisms can indeed be defined by an association with specific classes of inherent uncertainty: not least that isolating those signatures then provides a potential means for detecting life, for considering the forms that life could theoretically take, and for exploring the wider limits to how life might become distributed. These are all fundamental goals in astrobiology.</p>\",\"PeriodicalId\":8645,\"journal\":{\"name\":\"Astrobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1089/ast.2023.0094\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2023.0094","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

生物的行为是随机的。生态学文献中一种并不罕见的观点认为,这主要是由于观察者掌握的信息不足或环境随机所致,而不是部分由于生物本身的反应具有固有的不可预测性。在本研究中,我整理了与这一观点相悖的证据。生物体内部会产生不确定性,从而产生不可还原的随机反应。我考虑了其中的原因:例如,随机反应与对不断变化的环境和资源可用性的更强适应性有关。在更长的时间尺度上,生物产生的不确定性会影响行为、进化和宏观生态过程。事实上,可以说生物是由内部产生、放大和记录不确定性作为反应输入而定义的系统。如果生物体确实可以通过与特定类别的固有不确定性相关联来定义,那么就会产生重要的实际影响:尤其是,分离这些特征将为探测生命、考虑生命在理论上可能采取的形式以及探索生命如何分布的更广泛限制提供潜在的手段。这些都是天体生物学的基本目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Life Is Uncertain: Inherent Variability Exhibited by Organisms, and at Higher Levels of Biological Organization.

Organisms act stochastically. A not uncommon view in the ecological literature is that this is mainly due to the observer having insufficient information or a stochastic environment-and not partly because organisms themselves respond with inherent unpredictability. In this study, I compile the evidence that contradicts that view. Organisms generate uncertainty internally, which results in irreducible stochastic responses. I consider why: for instance, stochastic responses are associated with greater adaptability to changing environments and resource availability. Over longer timescales, biologically generated uncertainty influences behavior, evolution, and macroecological processes. Indeed, it could be stated that organisms are systems defined by the internal generation, magnification, and record-keeping of uncertainty as inputs to responses. Important practical implications arise if organisms can indeed be defined by an association with specific classes of inherent uncertainty: not least that isolating those signatures then provides a potential means for detecting life, for considering the forms that life could theoretically take, and for exploring the wider limits to how life might become distributed. These are all fundamental goals in astrobiology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信