利用早季生物量和天气预测黑麦覆盖作物的生物量

IF 2.3 4区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Alexandra Huddell, Brian Needelman, Eugene P. Law, Victoria J. Ackroyd, Muthukumar V. Bagavathiannan, Kevin Bradley, Adam S. Davis, Jeffery A. Evans, Wesley Jay Everman, Michael Flessner, Nicholas Jordan, Lauren M. Schwartz-Lazaro, Ramon G. Leon, John Lindquist, Jason K. Norsworthy, Lovreet S. Shergill, Mark VanGessel, Steven B. Mirsky
{"title":"利用早季生物量和天气预测黑麦覆盖作物的生物量","authors":"Alexandra Huddell,&nbsp;Brian Needelman,&nbsp;Eugene P. Law,&nbsp;Victoria J. Ackroyd,&nbsp;Muthukumar V. Bagavathiannan,&nbsp;Kevin Bradley,&nbsp;Adam S. Davis,&nbsp;Jeffery A. Evans,&nbsp;Wesley Jay Everman,&nbsp;Michael Flessner,&nbsp;Nicholas Jordan,&nbsp;Lauren M. Schwartz-Lazaro,&nbsp;Ramon G. Leon,&nbsp;John Lindquist,&nbsp;Jason K. Norsworthy,&nbsp;Lovreet S. Shergill,&nbsp;Mark VanGessel,&nbsp;Steven B. Mirsky","doi":"10.1002/ael2.20121","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n \n <p>Farmers need accurate estimates of winter cover crop biomass to make informed decisions on termination timing or to estimate potential release of nitrogen from cover crop residues to subsequent cash crops. Utilizing data from an extensive experiment across 11 states from 2016 to 2020, this study explores the most reliable predictors for determining cereal rye cover crop biomass at the time of termination. Our findings demonstrate a strong relationship between early-season and late-season cover crop biomass. Employing a random forest model, we predicted late-season cereal rye biomass with a margin of error of approximately 1,000 kg ha<sup>−1</sup> based on early-season biomass, growing degree days, cereal rye planting and termination dates, photosynthetically active radiation, precipitation, and site coordinates as predictors. Our results suggest that similar modeling approaches could be combined with remotely sensed early-season biomass estimations to improve the accuracy of predicting winter cover crop biomass at termination for decision support tools.</p>\n </section>\n \n <section>\n \n <h3> Core Ideas</h3>\n \n <div>\n <ul>\n \n <li>Cereal rye winter cover crop biomass modeled on data from 35 site-years.</li>\n \n <li>We found a strong relationship between early and late-season biomass.</li>\n \n <li>Random forest model with early-season biomass and weather data performed well.</li>\n \n <li>Similar approach could improve decision support tools for cover crop management.</li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":48502,"journal":{"name":"Agricultural & Environmental Letters","volume":"9 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ael2.20121","citationCount":"0","resultStr":"{\"title\":\"Early-season biomass and weather enable robust cereal rye cover crop biomass predictions\",\"authors\":\"Alexandra Huddell,&nbsp;Brian Needelman,&nbsp;Eugene P. Law,&nbsp;Victoria J. Ackroyd,&nbsp;Muthukumar V. Bagavathiannan,&nbsp;Kevin Bradley,&nbsp;Adam S. Davis,&nbsp;Jeffery A. Evans,&nbsp;Wesley Jay Everman,&nbsp;Michael Flessner,&nbsp;Nicholas Jordan,&nbsp;Lauren M. Schwartz-Lazaro,&nbsp;Ramon G. Leon,&nbsp;John Lindquist,&nbsp;Jason K. Norsworthy,&nbsp;Lovreet S. Shergill,&nbsp;Mark VanGessel,&nbsp;Steven B. Mirsky\",\"doi\":\"10.1002/ael2.20121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n \\n <p>Farmers need accurate estimates of winter cover crop biomass to make informed decisions on termination timing or to estimate potential release of nitrogen from cover crop residues to subsequent cash crops. Utilizing data from an extensive experiment across 11 states from 2016 to 2020, this study explores the most reliable predictors for determining cereal rye cover crop biomass at the time of termination. Our findings demonstrate a strong relationship between early-season and late-season cover crop biomass. Employing a random forest model, we predicted late-season cereal rye biomass with a margin of error of approximately 1,000 kg ha<sup>−1</sup> based on early-season biomass, growing degree days, cereal rye planting and termination dates, photosynthetically active radiation, precipitation, and site coordinates as predictors. Our results suggest that similar modeling approaches could be combined with remotely sensed early-season biomass estimations to improve the accuracy of predicting winter cover crop biomass at termination for decision support tools.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Core Ideas</h3>\\n \\n <div>\\n <ul>\\n \\n <li>Cereal rye winter cover crop biomass modeled on data from 35 site-years.</li>\\n \\n <li>We found a strong relationship between early and late-season biomass.</li>\\n \\n <li>Random forest model with early-season biomass and weather data performed well.</li>\\n \\n <li>Similar approach could improve decision support tools for cover crop management.</li>\\n </ul>\\n </div>\\n </section>\\n </div>\",\"PeriodicalId\":48502,\"journal\":{\"name\":\"Agricultural & Environmental Letters\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ael2.20121\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural & Environmental Letters\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ael2.20121\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural & Environmental Letters","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ael2.20121","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

农民需要准确估计冬季覆盖作物的生物量,以便就终止时间或估计覆盖作物残留物可能向后续经济作物释放的氮做出明智决策。本研究利用 2016 年至 2020 年横跨 11 个州的广泛试验数据,探讨了确定谷物黑麦覆盖作物终止时生物量的最可靠预测因素。我们的研究结果表明,早季和晚季覆盖作物生物量之间存在密切关系。我们采用随机森林模型,根据早季生物量、生长度日、黑麦种植和终止日期、光合有效辐射、降水量和地点坐标作为预测因子,预测了晚季黑麦生物量,误差范围约为 1,000 千克/公顷。我们的研究结果表明,类似的建模方法可与遥感早季生物量估测相结合,以提高决策支持工具预测冬季覆盖作物终止时生物量的准确性。 核心理念 谷物黑麦冬季覆盖作物生物量建模基于 35 个地点年的数据。 我们发现早季生物量与晚季生物量之间存在密切关系。 利用早季生物量和天气数据建立的随机森林模型表现良好。 类似的方法可以改进覆盖作物管理的决策支持工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Early-season biomass and weather enable robust cereal rye cover crop biomass predictions

Early-season biomass and weather enable robust cereal rye cover crop biomass predictions

Farmers need accurate estimates of winter cover crop biomass to make informed decisions on termination timing or to estimate potential release of nitrogen from cover crop residues to subsequent cash crops. Utilizing data from an extensive experiment across 11 states from 2016 to 2020, this study explores the most reliable predictors for determining cereal rye cover crop biomass at the time of termination. Our findings demonstrate a strong relationship between early-season and late-season cover crop biomass. Employing a random forest model, we predicted late-season cereal rye biomass with a margin of error of approximately 1,000 kg ha−1 based on early-season biomass, growing degree days, cereal rye planting and termination dates, photosynthetically active radiation, precipitation, and site coordinates as predictors. Our results suggest that similar modeling approaches could be combined with remotely sensed early-season biomass estimations to improve the accuracy of predicting winter cover crop biomass at termination for decision support tools.

Core Ideas

  • Cereal rye winter cover crop biomass modeled on data from 35 site-years.
  • We found a strong relationship between early and late-season biomass.
  • Random forest model with early-season biomass and weather data performed well.
  • Similar approach could improve decision support tools for cover crop management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
3.80%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信