J.K. Singh , H. Balhara , Shaily , T.Q. Do , J. Jena
{"title":"对 Sáez Ballester 理论中哈勃参数的观测约束","authors":"J.K. Singh , H. Balhara , Shaily , T.Q. Do , J. Jena","doi":"10.1016/j.ascom.2024.100800","DOIUrl":null,"url":null,"abstract":"<div><p>We study a dark energy model in the background of a spatially homogeneous and isotropic Friedmann-Lema<span><math><mover><mrow><mi>ı</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>tre-Robertson-Walker (FLRW) space–time in Sáez Ballester’s theory of gravity (Saez and Ballester, 1986; Saez, 1983). We employ a special law of variation for the Hubble parameter proposed by Bermann (1983) to create a specific model in this gravity. The values of Hubble parameter <span><math><mi>H</mi></math></span> and the deceleration parameter <span><math><mi>q</mi></math></span> have been constrained by using the <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>P</mi><mi>a</mi><mi>n</mi><mi>t</mi><mi>h</mi><mi>e</mi><mi>o</mi><mi>n</mi></mrow></math></span>, and the joint of <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>P</mi><mi>a</mi><mi>n</mi><mi>t</mi><mi>h</mi><mi>e</mi><mi>o</mi><mi>n</mi></mrow></math></span> datasets. The physical features of the model have been discussed, and the obtained results have been found consistent according to the recent observational datasets. In addition, we find that our model represents the quintessence dark energy model in the late times at low redshift. The scalar field increases infinitely in infinite time.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"47 ","pages":"Article 100800"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observational constraints on Hubble parameter in Sáez Ballester theory\",\"authors\":\"J.K. Singh , H. Balhara , Shaily , T.Q. Do , J. Jena\",\"doi\":\"10.1016/j.ascom.2024.100800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a dark energy model in the background of a spatially homogeneous and isotropic Friedmann-Lema<span><math><mover><mrow><mi>ı</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>tre-Robertson-Walker (FLRW) space–time in Sáez Ballester’s theory of gravity (Saez and Ballester, 1986; Saez, 1983). We employ a special law of variation for the Hubble parameter proposed by Bermann (1983) to create a specific model in this gravity. The values of Hubble parameter <span><math><mi>H</mi></math></span> and the deceleration parameter <span><math><mi>q</mi></math></span> have been constrained by using the <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>P</mi><mi>a</mi><mi>n</mi><mi>t</mi><mi>h</mi><mi>e</mi><mi>o</mi><mi>n</mi></mrow></math></span>, and the joint of <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>P</mi><mi>a</mi><mi>n</mi><mi>t</mi><mi>h</mi><mi>e</mi><mi>o</mi><mi>n</mi></mrow></math></span> datasets. The physical features of the model have been discussed, and the obtained results have been found consistent according to the recent observational datasets. In addition, we find that our model represents the quintessence dark energy model in the late times at low redshift. The scalar field increases infinitely in infinite time.</p></div>\",\"PeriodicalId\":48757,\"journal\":{\"name\":\"Astronomy and Computing\",\"volume\":\"47 \",\"pages\":\"Article 100800\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy and Computing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213133724000155\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000155","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了萨伊斯-巴勒斯特引力理论(Saez and Ballester, 1986; Saez, 1983)中空间均匀和各向同性的弗里德曼-勒马-罗伯逊-沃克(Friedmann-Lemaıˆtre-Robertson-Walker,FLRW)时空背景下的暗能量模型。我们采用了 Bermann(1983 年)提出的哈勃参数的特殊变化规律,以创建该引力的特定模型。哈勃参数 H 和减速参数 q 的值是通过 H(z)、Pantheon 以及 H(z) 和 Pantheon 联合数据集来限制的。我们讨论了模型的物理特征,并发现所得到的结果与最近的观测数据集是一致的。此外,我们发现我们的模型代表了低红移晚期的五重暗能量模型。标量场在无限时间内无限增大。
Observational constraints on Hubble parameter in Sáez Ballester theory
We study a dark energy model in the background of a spatially homogeneous and isotropic Friedmann-Lematre-Robertson-Walker (FLRW) space–time in Sáez Ballester’s theory of gravity (Saez and Ballester, 1986; Saez, 1983). We employ a special law of variation for the Hubble parameter proposed by Bermann (1983) to create a specific model in this gravity. The values of Hubble parameter and the deceleration parameter have been constrained by using the , , and the joint of and datasets. The physical features of the model have been discussed, and the obtained results have been found consistent according to the recent observational datasets. In addition, we find that our model represents the quintessence dark energy model in the late times at low redshift. The scalar field increases infinitely in infinite time.
Astronomy and ComputingASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍:
Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.