Marko E. Popović, Gavrilo Šekularac, Marija Mihailović
{"title":"如夏日风暴轮状病毒 A 的生物热力学分析 - 病毒繁殖和抗原受体结合的经验公式、生物合成反应和驱动力","authors":"Marko E. Popović, Gavrilo Šekularac, Marija Mihailović","doi":"10.1016/j.mran.2024.100291","DOIUrl":null,"url":null,"abstract":"<div><p>For thousands of years, medicine has made efforts to study and heal infectious diseases. For centuries, medicine and biology have attempted to study the mechanisms of development of infectious diseases. For 100 years, virology has tried to understand and describe different viruses and reveal the secrets of pathophysiology of infections. Several decades ago, the efforts of biomedical scientists were joined by chemists. Since then viruses have been explored not only as biological systems, but also as chemical systems. With the beginning of the COVID-19 pandemic, biothermodynamics has made its contribution to the research on driving forces and mechanisms of lifecycles of viruses, the virus-host interaction. Since then, viruses have been analyzed as biological, chemical and thermodynamic systems. After reporting of chemical and thermodynamic properties of SARS-CoV, MERS-CoV, SARS-CoV-2, Ebola, Mpox, West Nile virus and bacteriophages, this paper reports for the first time the empirical formulas (unit carbon formulas) of Rotavirus A, as well as its thermodynamic properties of virus-host interaction at the membrane (antigen-receptor binding) and virus-host interaction in the cytoplasm (virus multiplication). The virus-host interactions are essentially chemical reactions, the driving force of which is Gibbs energy (of binding and biosynthesis).</p></div>","PeriodicalId":48593,"journal":{"name":"Microbial Risk Analysis","volume":"26 ","pages":"Article 100291"},"PeriodicalIF":3.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Like a summer storm: Biothermodynamic analysis of Rotavirus A - Empirical formula, biosynthesis reaction and driving force of virus multiplication and antigen-receptor binding\",\"authors\":\"Marko E. Popović, Gavrilo Šekularac, Marija Mihailović\",\"doi\":\"10.1016/j.mran.2024.100291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For thousands of years, medicine has made efforts to study and heal infectious diseases. For centuries, medicine and biology have attempted to study the mechanisms of development of infectious diseases. For 100 years, virology has tried to understand and describe different viruses and reveal the secrets of pathophysiology of infections. Several decades ago, the efforts of biomedical scientists were joined by chemists. Since then viruses have been explored not only as biological systems, but also as chemical systems. With the beginning of the COVID-19 pandemic, biothermodynamics has made its contribution to the research on driving forces and mechanisms of lifecycles of viruses, the virus-host interaction. Since then, viruses have been analyzed as biological, chemical and thermodynamic systems. After reporting of chemical and thermodynamic properties of SARS-CoV, MERS-CoV, SARS-CoV-2, Ebola, Mpox, West Nile virus and bacteriophages, this paper reports for the first time the empirical formulas (unit carbon formulas) of Rotavirus A, as well as its thermodynamic properties of virus-host interaction at the membrane (antigen-receptor binding) and virus-host interaction in the cytoplasm (virus multiplication). The virus-host interactions are essentially chemical reactions, the driving force of which is Gibbs energy (of binding and biosynthesis).</p></div>\",\"PeriodicalId\":48593,\"journal\":{\"name\":\"Microbial Risk Analysis\",\"volume\":\"26 \",\"pages\":\"Article 100291\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Risk Analysis\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352352224000021\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Risk Analysis","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352352224000021","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
几千年来,医学一直在努力研究和治疗传染病。几个世纪以来,医学和生物学一直试图研究传染病的发病机制。100 年来,病毒学一直试图了解和描述不同的病毒,揭示感染病理生理学的秘密。几十年前,化学家加入了生物医学家的努力。从那时起,人们不仅将病毒作为生物系统,还将其作为化学系统进行研究。随着 COVID-19 大流行的开始,生物热力学对病毒生命周期的驱动力和机制以及病毒与宿主相互作用的研究做出了贡献。从那时起,病毒就被作为生物、化学和热力学系统进行分析。在报告了 SARS-CoV、MERS-CoV、SARS-CoV-2、埃博拉病毒、Mpox、西尼罗河病毒和噬菌体的化学和热力学性质之后,本文首次报告了轮状病毒 A 的经验公式(单位碳式)及其在膜上的病毒-宿主相互作用(抗原-受体结合)和在细胞质中的病毒-宿主相互作用(病毒繁殖)的热力学性质。病毒与宿主的相互作用本质上是化学反应,其驱动力是(结合和生物合成的)吉布斯能。
Like a summer storm: Biothermodynamic analysis of Rotavirus A - Empirical formula, biosynthesis reaction and driving force of virus multiplication and antigen-receptor binding
For thousands of years, medicine has made efforts to study and heal infectious diseases. For centuries, medicine and biology have attempted to study the mechanisms of development of infectious diseases. For 100 years, virology has tried to understand and describe different viruses and reveal the secrets of pathophysiology of infections. Several decades ago, the efforts of biomedical scientists were joined by chemists. Since then viruses have been explored not only as biological systems, but also as chemical systems. With the beginning of the COVID-19 pandemic, biothermodynamics has made its contribution to the research on driving forces and mechanisms of lifecycles of viruses, the virus-host interaction. Since then, viruses have been analyzed as biological, chemical and thermodynamic systems. After reporting of chemical and thermodynamic properties of SARS-CoV, MERS-CoV, SARS-CoV-2, Ebola, Mpox, West Nile virus and bacteriophages, this paper reports for the first time the empirical formulas (unit carbon formulas) of Rotavirus A, as well as its thermodynamic properties of virus-host interaction at the membrane (antigen-receptor binding) and virus-host interaction in the cytoplasm (virus multiplication). The virus-host interactions are essentially chemical reactions, the driving force of which is Gibbs energy (of binding and biosynthesis).
期刊介绍:
The journal Microbial Risk Analysis accepts articles dealing with the study of risk analysis applied to microbial hazards. Manuscripts should at least cover any of the components of risk assessment (risk characterization, exposure assessment, etc.), risk management and/or risk communication in any microbiology field (clinical, environmental, food, veterinary, etc.). This journal also accepts article dealing with predictive microbiology, quantitative microbial ecology, mathematical modeling, risk studies applied to microbial ecology, quantitative microbiology for epidemiological studies, statistical methods applied to microbiology, and laws and regulatory policies aimed at lessening the risk of microbial hazards. Work focusing on risk studies of viruses, parasites, microbial toxins, antimicrobial resistant organisms, genetically modified organisms (GMOs), and recombinant DNA products are also acceptable.