{"title":"用于水氧化的分子催化剂集成光电化学系统的最新进展","authors":"Xiaokang Wan , Guanghui Zhu , Zhifu Zhou , Xiangjiu Guan","doi":"10.1016/j.mtcata.2024.100042","DOIUrl":null,"url":null,"abstract":"<div><p>The major limitations of photoelectrochemical (PEC) water splitting lies in the currently unsatisfying efficiency and stability of the semiconductor materials-based water splitting systems. By addressing these limitations, the immobilization of the molecular catalysts on semiconductor photoanodes to establish a hybrid inorganic-organic PEC system has attracted an increasing research attention. It is crucial to choose a suitable molecular catalyst and effectively couple it into a hybrid photoelectrode system. In this review, focusing on the water oxidation process, molecular catalysts integrated photoelectrochemical water oxidation systems are highlighted from the perspective of the roles of molecular catalysts and the integration strategies in the hybrid system. The most recent advances are summarized with various case studies presented, based on which perspectives are proposed to provide guidance toward the rational design of an integrated system for future development.</p></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"4 ","pages":"Article 100042"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949754X24000048/pdfft?md5=a9a8d726ef87d23e9b75222c82b862a3&pid=1-s2.0-S2949754X24000048-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent progress on molecular catalysts integrated photoelectrochemical systems for water oxidation\",\"authors\":\"Xiaokang Wan , Guanghui Zhu , Zhifu Zhou , Xiangjiu Guan\",\"doi\":\"10.1016/j.mtcata.2024.100042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The major limitations of photoelectrochemical (PEC) water splitting lies in the currently unsatisfying efficiency and stability of the semiconductor materials-based water splitting systems. By addressing these limitations, the immobilization of the molecular catalysts on semiconductor photoanodes to establish a hybrid inorganic-organic PEC system has attracted an increasing research attention. It is crucial to choose a suitable molecular catalyst and effectively couple it into a hybrid photoelectrode system. In this review, focusing on the water oxidation process, molecular catalysts integrated photoelectrochemical water oxidation systems are highlighted from the perspective of the roles of molecular catalysts and the integration strategies in the hybrid system. The most recent advances are summarized with various case studies presented, based on which perspectives are proposed to provide guidance toward the rational design of an integrated system for future development.</p></div>\",\"PeriodicalId\":100892,\"journal\":{\"name\":\"Materials Today Catalysis\",\"volume\":\"4 \",\"pages\":\"Article 100042\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949754X24000048/pdfft?md5=a9a8d726ef87d23e9b75222c82b862a3&pid=1-s2.0-S2949754X24000048-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949754X24000048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X24000048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent progress on molecular catalysts integrated photoelectrochemical systems for water oxidation
The major limitations of photoelectrochemical (PEC) water splitting lies in the currently unsatisfying efficiency and stability of the semiconductor materials-based water splitting systems. By addressing these limitations, the immobilization of the molecular catalysts on semiconductor photoanodes to establish a hybrid inorganic-organic PEC system has attracted an increasing research attention. It is crucial to choose a suitable molecular catalyst and effectively couple it into a hybrid photoelectrode system. In this review, focusing on the water oxidation process, molecular catalysts integrated photoelectrochemical water oxidation systems are highlighted from the perspective of the roles of molecular catalysts and the integration strategies in the hybrid system. The most recent advances are summarized with various case studies presented, based on which perspectives are proposed to provide guidance toward the rational design of an integrated system for future development.