细胞器生物发生过程中猝灭合成的影响

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Binayak Banerjee, Dipjyoti Das
{"title":"细胞器生物发生过程中猝灭合成的影响","authors":"Binayak Banerjee,&nbsp;Dipjyoti Das","doi":"10.1016/j.mbs.2024.109156","DOIUrl":null,"url":null,"abstract":"<div><p>A fundamental question of cell biology is how cells control the number of organelles. The processes of organelle biogenesis, namely <em>de novo</em> synthesis, fission, fusion, and decay, are inherently stochastic, producing cell-to-cell variability in organelle abundance. In addition, experiments suggest that the synthesis of some organelles can be bursty. We thus ask how bursty synthesis impacts intracellular organelle number distribution. We develop an organelle biogenesis model with bursty <em>de novo</em> synthesis by considering geometrically distributed burst sizes. We analytically solve the model in biologically relevant limits and provide exact expressions for the steady-state organelle number distributions and their means and variances. We also present approximate solutions for the whole model, complementing with exact stochastic simulations. We show that bursts generally increase the noise in organelle numbers, producing distinct signatures in noise profiles depending on different mechanisms of organelle biogenesis. We also find different shapes of organelle number distributions, including bimodal distributions in some parameter regimes. Notably, bursty synthesis broadens the parameter regime of observing bimodality compared to the ‘non-bursty’ case. Together, our framework utilizes number fluctuations to elucidate the role of bursty synthesis in producing organelle number heterogeneity in cells.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of bursty synthesis in organelle biogenesis\",\"authors\":\"Binayak Banerjee,&nbsp;Dipjyoti Das\",\"doi\":\"10.1016/j.mbs.2024.109156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A fundamental question of cell biology is how cells control the number of organelles. The processes of organelle biogenesis, namely <em>de novo</em> synthesis, fission, fusion, and decay, are inherently stochastic, producing cell-to-cell variability in organelle abundance. In addition, experiments suggest that the synthesis of some organelles can be bursty. We thus ask how bursty synthesis impacts intracellular organelle number distribution. We develop an organelle biogenesis model with bursty <em>de novo</em> synthesis by considering geometrically distributed burst sizes. We analytically solve the model in biologically relevant limits and provide exact expressions for the steady-state organelle number distributions and their means and variances. We also present approximate solutions for the whole model, complementing with exact stochastic simulations. We show that bursts generally increase the noise in organelle numbers, producing distinct signatures in noise profiles depending on different mechanisms of organelle biogenesis. We also find different shapes of organelle number distributions, including bimodal distributions in some parameter regimes. Notably, bursty synthesis broadens the parameter regime of observing bimodality compared to the ‘non-bursty’ case. Together, our framework utilizes number fluctuations to elucidate the role of bursty synthesis in producing organelle number heterogeneity in cells.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556424000166\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424000166","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

细胞生物学的一个基本问题是细胞如何控制细胞器的数量。细胞器的生物发生过程,即从头合成、裂变、融合和衰变,本身就具有随机性,从而导致细胞间细胞器丰度的变化。此外,实验表明,某些细胞器的合成可能是突发性的。因此,我们提出了突发性合成如何影响细胞内细胞器数量分布的问题。通过考虑几何分布的猝发大小,我们建立了一个具有猝发从头合成的细胞器生物发生模型。我们对该模型进行了生物相关极限的分析求解,并给出了稳态细胞器数量分布及其均值和方差的精确表达式。我们还提出了整个模型的近似解,并辅以精确的随机模拟。我们发现,猝发通常会增加细胞器数量的噪声,并根据细胞器生物生成的不同机制产生不同的噪声特征。我们还发现细胞器数量分布的不同形状,包括某些参数区的双峰分布。值得注意的是,与 "非突发性 "情况相比,突发性合成扩大了观察双峰分布的参数范围。总之,我们的框架利用数量波动来阐明猝发合成在细胞中产生细胞器数量异质性的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of bursty synthesis in organelle biogenesis

A fundamental question of cell biology is how cells control the number of organelles. The processes of organelle biogenesis, namely de novo synthesis, fission, fusion, and decay, are inherently stochastic, producing cell-to-cell variability in organelle abundance. In addition, experiments suggest that the synthesis of some organelles can be bursty. We thus ask how bursty synthesis impacts intracellular organelle number distribution. We develop an organelle biogenesis model with bursty de novo synthesis by considering geometrically distributed burst sizes. We analytically solve the model in biologically relevant limits and provide exact expressions for the steady-state organelle number distributions and their means and variances. We also present approximate solutions for the whole model, complementing with exact stochastic simulations. We show that bursts generally increase the noise in organelle numbers, producing distinct signatures in noise profiles depending on different mechanisms of organelle biogenesis. We also find different shapes of organelle number distributions, including bimodal distributions in some parameter regimes. Notably, bursty synthesis broadens the parameter regime of observing bimodality compared to the ‘non-bursty’ case. Together, our framework utilizes number fluctuations to elucidate the role of bursty synthesis in producing organelle number heterogeneity in cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信