Qian Zheng, Kefu Guo, Yinghui Meng, Jiaofen Nan, Lin Xu
{"title":"自适应修正追踪方向的白质纤维追踪法","authors":"Qian Zheng, Kefu Guo, Yinghui Meng, Jiaofen Nan, Lin Xu","doi":"10.1155/2024/4102461","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The deterministic fiber tracking method has the advantage of high computational efficiency and good repeatability, making it suitable for the noninvasive estimation of brain structural connectivity in clinical fields. To address the issue of the current classical deterministic method tending to deviate in the tracking direction in the region of crossing fiber region, in this paper, we propose an adaptive correction-based deterministic white matter fiber tracking method, named FTACTD.</p><p><strong>Methods: </strong>The proposed FTACTD method can accurately track white matter fibers by adaptively adjusting the deflection direction strategy based on the tensor matrix and the input fiber direction of adjacent voxels. The degree of correction direction changes adaptively according to the shape of the diffusion tensor, mimicking the actual tracking deflection angle and direction. Furthermore, both forward and reverse tracking techniques are employed to track the entire fiber. The effectiveness of the proposed method is validated and quantified using both simulated and real brain datasets. Various indicators such as invalid bundles (IB), valid bundles (VB), invalid connections (IC), no connections (NC), and valid connections (VC) are utilized to assess the performance of the proposed method on simulated data and real diffusion-weighted imaging (DWI) data.</p><p><strong>Results: </strong>The experimental results of the simulated data show that the FTACTD method tracks outperform existing methods, achieving the highest number of VB with a total of 13 bundles. Additionally, it identifies the least number of incorrect fiber bundles, with only 32 bundles identified as wrong. Compared to the FACT method, the FTACTD method reduces the number of NC by 36.38%. In terms of VC, the FTACTD method surpasses even the best performing SD_Stream method among deterministic methods by 1.64%. Extensive in vivo experiments demonstrate the superiority of the proposed method in terms of tracking more accurate and complete fiber paths, resulting in improved continuity.</p><p><strong>Conclusion: </strong>The FTACTD method proposed in this study indicates superior tracking results and provides a methodological basis for the investigating, diagnosis, and treatment of brain disorders associated with white matter fiber deficits and abnormalities.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861278/pdf/","citationCount":"0","resultStr":"{\"title\":\"White Matter Fiber Tracking Method with Adaptive Correction of Tracking Direction.\",\"authors\":\"Qian Zheng, Kefu Guo, Yinghui Meng, Jiaofen Nan, Lin Xu\",\"doi\":\"10.1155/2024/4102461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The deterministic fiber tracking method has the advantage of high computational efficiency and good repeatability, making it suitable for the noninvasive estimation of brain structural connectivity in clinical fields. To address the issue of the current classical deterministic method tending to deviate in the tracking direction in the region of crossing fiber region, in this paper, we propose an adaptive correction-based deterministic white matter fiber tracking method, named FTACTD.</p><p><strong>Methods: </strong>The proposed FTACTD method can accurately track white matter fibers by adaptively adjusting the deflection direction strategy based on the tensor matrix and the input fiber direction of adjacent voxels. The degree of correction direction changes adaptively according to the shape of the diffusion tensor, mimicking the actual tracking deflection angle and direction. Furthermore, both forward and reverse tracking techniques are employed to track the entire fiber. The effectiveness of the proposed method is validated and quantified using both simulated and real brain datasets. Various indicators such as invalid bundles (IB), valid bundles (VB), invalid connections (IC), no connections (NC), and valid connections (VC) are utilized to assess the performance of the proposed method on simulated data and real diffusion-weighted imaging (DWI) data.</p><p><strong>Results: </strong>The experimental results of the simulated data show that the FTACTD method tracks outperform existing methods, achieving the highest number of VB with a total of 13 bundles. Additionally, it identifies the least number of incorrect fiber bundles, with only 32 bundles identified as wrong. Compared to the FACT method, the FTACTD method reduces the number of NC by 36.38%. In terms of VC, the FTACTD method surpasses even the best performing SD_Stream method among deterministic methods by 1.64%. Extensive in vivo experiments demonstrate the superiority of the proposed method in terms of tracking more accurate and complete fiber paths, resulting in improved continuity.</p><p><strong>Conclusion: </strong>The FTACTD method proposed in this study indicates superior tracking results and provides a methodological basis for the investigating, diagnosis, and treatment of brain disorders associated with white matter fiber deficits and abnormalities.</p>\",\"PeriodicalId\":47063,\"journal\":{\"name\":\"International Journal of Biomedical Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861278/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/4102461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/4102461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
White Matter Fiber Tracking Method with Adaptive Correction of Tracking Direction.
Background: The deterministic fiber tracking method has the advantage of high computational efficiency and good repeatability, making it suitable for the noninvasive estimation of brain structural connectivity in clinical fields. To address the issue of the current classical deterministic method tending to deviate in the tracking direction in the region of crossing fiber region, in this paper, we propose an adaptive correction-based deterministic white matter fiber tracking method, named FTACTD.
Methods: The proposed FTACTD method can accurately track white matter fibers by adaptively adjusting the deflection direction strategy based on the tensor matrix and the input fiber direction of adjacent voxels. The degree of correction direction changes adaptively according to the shape of the diffusion tensor, mimicking the actual tracking deflection angle and direction. Furthermore, both forward and reverse tracking techniques are employed to track the entire fiber. The effectiveness of the proposed method is validated and quantified using both simulated and real brain datasets. Various indicators such as invalid bundles (IB), valid bundles (VB), invalid connections (IC), no connections (NC), and valid connections (VC) are utilized to assess the performance of the proposed method on simulated data and real diffusion-weighted imaging (DWI) data.
Results: The experimental results of the simulated data show that the FTACTD method tracks outperform existing methods, achieving the highest number of VB with a total of 13 bundles. Additionally, it identifies the least number of incorrect fiber bundles, with only 32 bundles identified as wrong. Compared to the FACT method, the FTACTD method reduces the number of NC by 36.38%. In terms of VC, the FTACTD method surpasses even the best performing SD_Stream method among deterministic methods by 1.64%. Extensive in vivo experiments demonstrate the superiority of the proposed method in terms of tracking more accurate and complete fiber paths, resulting in improved continuity.
Conclusion: The FTACTD method proposed in this study indicates superior tracking results and provides a methodological basis for the investigating, diagnosis, and treatment of brain disorders associated with white matter fiber deficits and abnormalities.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics