德国 CheXpert 胸部 X 射线放射报告贴标机。

IF 1.3 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Alessandro Wollek, Sardi Hyska, Thomas Sedlmeyr, Philip Haitzer, Johannes Rueckel, Bastian O Sabel, Michael Ingrisch, Tobias Lasser
{"title":"德国 CheXpert 胸部 X 射线放射报告贴标机。","authors":"Alessandro Wollek, Sardi Hyska, Thomas Sedlmeyr, Philip Haitzer, Johannes Rueckel, Bastian O Sabel, Michael Ingrisch, Tobias Lasser","doi":"10.1055/a-2234-8268","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong> The aim of this study was to develop an algorithm to automatically extract annotations from German thoracic radiology reports to train deep learning-based chest X-ray classification models.</p><p><strong>Materials and methods: </strong> An automatic label extraction model for German thoracic radiology reports was designed based on the CheXpert architecture. The algorithm can extract labels for twelve common chest pathologies, the presence of support devices, and \"no finding\". For iterative improvements and to generate a ground truth, a web-based multi-reader annotation interface was created. With the proposed annotation interface, a radiologist annotated 1086 retrospectively collected radiology reports from 2020-2021 (data set 1). The effect of automatically extracted labels on chest radiograph classification performance was evaluated on an additional, in-house pneumothorax data set (data set 2), containing 6434 chest radiographs with corresponding reports, by comparing a DenseNet-121 model trained on extracted labels from the associated reports, image-based pneumothorax labels, and publicly available data, respectively.</p><p><strong>Results: </strong> Comparing automated to manual labeling on data set 1: \"mention extraction\" class-wise F1 scores ranged from 0.8 to 0.995, the \"negation detection\" F1 scores from 0.624 to 0.981, and F1 scores for \"uncertainty detection\" from 0.353 to 0.725. Extracted pneumothorax labels on data set 2 had a sensitivity of 0.997 [95 % CI: 0.994, 0.999] and specificity of 0.991 [95 % CI: 0.988, 0.994]. The model trained on publicly available data achieved an area under the receiver operating curve (AUC) for pneumothorax classification of 0.728 [95 % CI: 0.694, 0.760], while the models trained on automatically extracted labels and on manual annotations achieved values of 0.858 [95 % CI: 0.832, 0.882] and 0.934 [95 % CI: 0.918, 0.949], respectively.</p><p><strong>Conclusion: </strong> Automatic label extraction from German thoracic radiology reports is a promising substitute for manual labeling. By reducing the time required for data annotation, larger training data sets can be created, resulting in improved overall modeling performance. Our results demonstrated that a pneumothorax classifier trained on automatically extracted labels strongly outperformed the model trained on publicly available data, without the need for additional annotation time and performed competitively compared to manually labeled data.</p><p><strong>Key points: </strong>  · An algorithm for automatic German thoracic radiology report annotation was developed.. · Automatic label extraction is a promising substitute for manual labeling.. · The classifier trained on extracted labels outperformed the model trained on publicly available data..</p><p><strong>Zitierweise: </strong>· Wollek A, Hyska S, Sedlmeyr T et al. German CheXpert Chest X-ray Radiology Report Labeler. Fortschr Röntgenstr 2024; 196: 956 - 965.</p>","PeriodicalId":21490,"journal":{"name":"Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren","volume":" ","pages":"956-965"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"German CheXpert Chest X-ray Radiology Report Labeler.\",\"authors\":\"Alessandro Wollek, Sardi Hyska, Thomas Sedlmeyr, Philip Haitzer, Johannes Rueckel, Bastian O Sabel, Michael Ingrisch, Tobias Lasser\",\"doi\":\"10.1055/a-2234-8268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong> The aim of this study was to develop an algorithm to automatically extract annotations from German thoracic radiology reports to train deep learning-based chest X-ray classification models.</p><p><strong>Materials and methods: </strong> An automatic label extraction model for German thoracic radiology reports was designed based on the CheXpert architecture. The algorithm can extract labels for twelve common chest pathologies, the presence of support devices, and \\\"no finding\\\". For iterative improvements and to generate a ground truth, a web-based multi-reader annotation interface was created. With the proposed annotation interface, a radiologist annotated 1086 retrospectively collected radiology reports from 2020-2021 (data set 1). The effect of automatically extracted labels on chest radiograph classification performance was evaluated on an additional, in-house pneumothorax data set (data set 2), containing 6434 chest radiographs with corresponding reports, by comparing a DenseNet-121 model trained on extracted labels from the associated reports, image-based pneumothorax labels, and publicly available data, respectively.</p><p><strong>Results: </strong> Comparing automated to manual labeling on data set 1: \\\"mention extraction\\\" class-wise F1 scores ranged from 0.8 to 0.995, the \\\"negation detection\\\" F1 scores from 0.624 to 0.981, and F1 scores for \\\"uncertainty detection\\\" from 0.353 to 0.725. Extracted pneumothorax labels on data set 2 had a sensitivity of 0.997 [95 % CI: 0.994, 0.999] and specificity of 0.991 [95 % CI: 0.988, 0.994]. The model trained on publicly available data achieved an area under the receiver operating curve (AUC) for pneumothorax classification of 0.728 [95 % CI: 0.694, 0.760], while the models trained on automatically extracted labels and on manual annotations achieved values of 0.858 [95 % CI: 0.832, 0.882] and 0.934 [95 % CI: 0.918, 0.949], respectively.</p><p><strong>Conclusion: </strong> Automatic label extraction from German thoracic radiology reports is a promising substitute for manual labeling. By reducing the time required for data annotation, larger training data sets can be created, resulting in improved overall modeling performance. Our results demonstrated that a pneumothorax classifier trained on automatically extracted labels strongly outperformed the model trained on publicly available data, without the need for additional annotation time and performed competitively compared to manually labeled data.</p><p><strong>Key points: </strong>  · An algorithm for automatic German thoracic radiology report annotation was developed.. · Automatic label extraction is a promising substitute for manual labeling.. · The classifier trained on extracted labels outperformed the model trained on publicly available data..</p><p><strong>Zitierweise: </strong>· Wollek A, Hyska S, Sedlmeyr T et al. German CheXpert Chest X-ray Radiology Report Labeler. Fortschr Röntgenstr 2024; 196: 956 - 965.</p>\",\"PeriodicalId\":21490,\"journal\":{\"name\":\"Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren\",\"volume\":\" \",\"pages\":\"956-965\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2234-8268\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2234-8268","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在开发一种算法,从德国胸部放射学报告中自动提取注释,以训练基于深度学习的胸部 X 光分类模型:基于 CheXpert 架构设计了一个德国胸部放射学报告自动标签提取模型。该算法可提取 12 种常见胸部病变、辅助设备的存在以及 "无发现 "的标签。为了反复改进和生成基本事实,我们创建了一个基于网络的多读者注释界面。利用该注释界面,一位放射科医生对 2020-2021 年间回顾性收集的 1086 份放射学报告(数据集 1)进行了注释。在另外一个内部气胸数据集(数据集 2)上评估了自动提取标签对胸片分类性能的影响,该数据集包含 6434 张胸片和相应的报告,分别比较了根据相关报告提取的标签训练的 DenseNet-121 模型、基于图像的气胸标签和公开可用的数据:比较数据集 1 的自动和人工标注:"提及提取 "类的 F1 分数在 0.8 到 0.995 之间,"否定检测 "的 F1 分数在 0.624 到 0.981 之间,"不确定性检测 "的 F1 分数在 0.353 到 0.725 之间。在数据集 2 中提取的气胸标签灵敏度为 0.997 [95 % CI: 0.994, 0.999],特异度为 0.991 [95 % CI: 0.988, 0.994]。根据公开数据训练的模型在气胸分类方面的接收者操作曲线下面积(AUC)为 0.728 [95 % CI: 0.694, 0.760],而根据自动提取的标签和人工注释训练的模型的接收者操作曲线下面积(AUC)分别为 0.858 [95 % CI: 0.832, 0.882] 和 0.934 [95 % CI: 0.918, 0.949]:结论:从德国胸部放射学报告中自动提取标签有望取代人工标签。通过减少数据标注所需的时间,可以创建更大的训练数据集,从而提高整体建模性能。我们的研究结果表明,根据自动提取的标签训练的气胸分类器大大优于根据公开数据训练的模型,而无需额外的标注时间,与人工标注的数据相比,其性能更具竞争力:- 开发了一种用于德国胸腔放射学报告自动标注的算法。- 自动标签提取有望取代人工标注。- 根据提取的标签训练的分类器优于根据公开数据训练的模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
German CheXpert Chest X-ray Radiology Report Labeler.

Purpose:  The aim of this study was to develop an algorithm to automatically extract annotations from German thoracic radiology reports to train deep learning-based chest X-ray classification models.

Materials and methods:  An automatic label extraction model for German thoracic radiology reports was designed based on the CheXpert architecture. The algorithm can extract labels for twelve common chest pathologies, the presence of support devices, and "no finding". For iterative improvements and to generate a ground truth, a web-based multi-reader annotation interface was created. With the proposed annotation interface, a radiologist annotated 1086 retrospectively collected radiology reports from 2020-2021 (data set 1). The effect of automatically extracted labels on chest radiograph classification performance was evaluated on an additional, in-house pneumothorax data set (data set 2), containing 6434 chest radiographs with corresponding reports, by comparing a DenseNet-121 model trained on extracted labels from the associated reports, image-based pneumothorax labels, and publicly available data, respectively.

Results:  Comparing automated to manual labeling on data set 1: "mention extraction" class-wise F1 scores ranged from 0.8 to 0.995, the "negation detection" F1 scores from 0.624 to 0.981, and F1 scores for "uncertainty detection" from 0.353 to 0.725. Extracted pneumothorax labels on data set 2 had a sensitivity of 0.997 [95 % CI: 0.994, 0.999] and specificity of 0.991 [95 % CI: 0.988, 0.994]. The model trained on publicly available data achieved an area under the receiver operating curve (AUC) for pneumothorax classification of 0.728 [95 % CI: 0.694, 0.760], while the models trained on automatically extracted labels and on manual annotations achieved values of 0.858 [95 % CI: 0.832, 0.882] and 0.934 [95 % CI: 0.918, 0.949], respectively.

Conclusion:  Automatic label extraction from German thoracic radiology reports is a promising substitute for manual labeling. By reducing the time required for data annotation, larger training data sets can be created, resulting in improved overall modeling performance. Our results demonstrated that a pneumothorax classifier trained on automatically extracted labels strongly outperformed the model trained on publicly available data, without the need for additional annotation time and performed competitively compared to manually labeled data.

Key points:   · An algorithm for automatic German thoracic radiology report annotation was developed.. · Automatic label extraction is a promising substitute for manual labeling.. · The classifier trained on extracted labels outperformed the model trained on publicly available data..

Zitierweise: · Wollek A, Hyska S, Sedlmeyr T et al. German CheXpert Chest X-ray Radiology Report Labeler. Fortschr Röntgenstr 2024; 196: 956 - 965.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
5.60%
发文量
340
期刊介绍: Die RöFo veröffentlicht Originalarbeiten, Übersichtsartikel und Fallberichte aus dem Bereich der Radiologie und den weiteren bildgebenden Verfahren in der Medizin. Es dürfen nur Arbeiten eingereicht werden, die noch nicht veröffentlicht sind und die auch nicht gleichzeitig einer anderen Zeitschrift zur Veröffentlichung angeboten wurden. Alle eingereichten Beiträge unterliegen einer sorgfältigen fachlichen Begutachtung. Gegründet 1896 – nur knapp 1 Jahr nach der Entdeckung der Röntgenstrahlen durch C.W. Röntgen – blickt die RöFo auf über 100 Jahre Erfahrung als wichtigstes Publikationsmedium in der deutschsprachigen Radiologie zurück. Sie ist damit die älteste radiologische Fachzeitschrift und schafft es erfolgreich, lange Kontinuität mit dem Anspruch an wissenschaftliches Publizieren auf internationalem Niveau zu verbinden. Durch ihren zentralen Platz im Verlagsprogramm stellte die RöFo die Basis für das heute umfassende und erfolgreiche Radiologie-Medienangebot im Georg Thieme Verlag. Besonders eng verbunden ist die RöFo mit der Geschichte der Röntgengesellschaften in Deutschland und Österreich. Sie ist offizielles Organ von DRG und ÖRG und die Mitglieder der Fachgesellschaften erhalten die Zeitschrift im Rahmen ihrer Mitgliedschaft. Mit ihrem wissenschaftlichen Kernteil und dem eigenen Mitteilungsteil der Fachgesellschaften bietet die RöFo Monat für Monat ein Forum für den Austausch von Inhalten und Botschaften der radiologischen Community im deutschsprachigen Raum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信