揭示前列腺癌患者衍生异种移植物的全局蛋白质组和磷酸蛋白质组

IF 4.1 2区 医学 Q2 CELL BIOLOGY
Zoi E Sychev, Abderrahman Day, Hannah E Bergom, Gabrianne Larson, Atef Ali, Megan Ludwig, Ella Boytim, Ilsa Coleman, Eva Corey, Stephen R Plymate, Peter S Nelson, Justin H Hwang, Justin M Drake
{"title":"揭示前列腺癌患者衍生异种移植物的全局蛋白质组和磷酸蛋白质组","authors":"Zoi E Sychev, Abderrahman Day, Hannah E Bergom, Gabrianne Larson, Atef Ali, Megan Ludwig, Ella Boytim, Ilsa Coleman, Eva Corey, Stephen R Plymate, Peter S Nelson, Justin H Hwang, Justin M Drake","doi":"10.1158/1541-7786.MCR-23-0976","DOIUrl":null,"url":null,"abstract":"<p><p>Resistance to androgen-deprivation therapies leads to metastatic castration-resistant prostate cancer (mCRPC) of adenocarcinoma (AdCa) origin that can transform into emergent aggressive variant prostate cancer (AVPC), which has neuroendocrine (NE)-like features. In this work, we used LuCaP patient-derived xenograft (PDX) tumors, clinically relevant models that reflect and retain key features of the tumor from advanced prostate cancer patients. Here we performed proteome and phosphoproteome characterization of 48 LuCaP PDX tumors and identified over 94,000 peptides and 9,700 phosphopeptides corresponding to 7,738 proteins. We compared 15 NE versus 33 AdCa samples, which included six different PDX tumors for each group in biological replicates, and identified 309 unique proteins and 476 unique phosphopeptides that were significantly altered and corresponded to proteins that are known to distinguish these two phenotypes. Assessment of concordance from PDX tumor-matched protein and mRNA revealed increased dissonance in transcriptionally regulated proteins in NE and metabolite interconversion enzymes in AdCa.</p><p><strong>Implications: </strong>Overall, our study highlights the importance of protein-based identification when compared with RNA and provides a rich resource of new and feasible targets for clinical assay development and in understanding the underlying biology of these tumors.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11063764/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling the Global Proteome and Phosphoproteome of Prostate Cancer Patient-Derived Xenografts.\",\"authors\":\"Zoi E Sychev, Abderrahman Day, Hannah E Bergom, Gabrianne Larson, Atef Ali, Megan Ludwig, Ella Boytim, Ilsa Coleman, Eva Corey, Stephen R Plymate, Peter S Nelson, Justin H Hwang, Justin M Drake\",\"doi\":\"10.1158/1541-7786.MCR-23-0976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Resistance to androgen-deprivation therapies leads to metastatic castration-resistant prostate cancer (mCRPC) of adenocarcinoma (AdCa) origin that can transform into emergent aggressive variant prostate cancer (AVPC), which has neuroendocrine (NE)-like features. In this work, we used LuCaP patient-derived xenograft (PDX) tumors, clinically relevant models that reflect and retain key features of the tumor from advanced prostate cancer patients. Here we performed proteome and phosphoproteome characterization of 48 LuCaP PDX tumors and identified over 94,000 peptides and 9,700 phosphopeptides corresponding to 7,738 proteins. We compared 15 NE versus 33 AdCa samples, which included six different PDX tumors for each group in biological replicates, and identified 309 unique proteins and 476 unique phosphopeptides that were significantly altered and corresponded to proteins that are known to distinguish these two phenotypes. Assessment of concordance from PDX tumor-matched protein and mRNA revealed increased dissonance in transcriptionally regulated proteins in NE and metabolite interconversion enzymes in AdCa.</p><p><strong>Implications: </strong>Overall, our study highlights the importance of protein-based identification when compared with RNA and provides a rich resource of new and feasible targets for clinical assay development and in understanding the underlying biology of these tumors.</p>\",\"PeriodicalId\":19095,\"journal\":{\"name\":\"Molecular Cancer Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11063764/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1541-7786.MCR-23-0976\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-23-0976","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对雄激素剥夺疗法的抵抗会导致腺癌(AdCa)来源的转移性去势抵抗性前列腺癌(mCRPC),并可能转变为具有神经内分泌(NE)样特征的侵袭性变异前列腺癌(AVPC)。在这项工作中,我们使用了 LuCaP 患者来源异种移植(PDX)肿瘤,这种临床相关模型反映并保留了晚期前列腺癌患者肿瘤的主要特征。在这里,我们对48个LuCaP PDX肿瘤进行了蛋白质组和磷酸化蛋白质组鉴定,共鉴定出94,000多肽和9,700个磷酸化肽,对应7,738个蛋白质。我们比较了 15 个 NE 样本和 33 个 AdCa 样本,其中包括每组 6 个不同 PDX 肿瘤的生物重复,并鉴定出 309 个独特的蛋白质和 476 个独特的磷酸肽,这些蛋白质和磷酸肽发生了显著变化,并与已知可区分这两种表型的蛋白质相对应。通过评估与 PDX 肿瘤匹配的蛋白质和 mRNA 的一致性,发现 NE 中转录调控蛋白质和 AdCa 中代谢物相互转换酶的不一致性增加。影响:总之,与 RNA 相比,我们的研究强调了基于蛋白质的鉴定的重要性,并为临床检测开发和了解这些肿瘤的潜在生物学特性提供了丰富的新的可行靶点资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling the Global Proteome and Phosphoproteome of Prostate Cancer Patient-Derived Xenografts.

Resistance to androgen-deprivation therapies leads to metastatic castration-resistant prostate cancer (mCRPC) of adenocarcinoma (AdCa) origin that can transform into emergent aggressive variant prostate cancer (AVPC), which has neuroendocrine (NE)-like features. In this work, we used LuCaP patient-derived xenograft (PDX) tumors, clinically relevant models that reflect and retain key features of the tumor from advanced prostate cancer patients. Here we performed proteome and phosphoproteome characterization of 48 LuCaP PDX tumors and identified over 94,000 peptides and 9,700 phosphopeptides corresponding to 7,738 proteins. We compared 15 NE versus 33 AdCa samples, which included six different PDX tumors for each group in biological replicates, and identified 309 unique proteins and 476 unique phosphopeptides that were significantly altered and corresponded to proteins that are known to distinguish these two phenotypes. Assessment of concordance from PDX tumor-matched protein and mRNA revealed increased dissonance in transcriptionally regulated proteins in NE and metabolite interconversion enzymes in AdCa.

Implications: Overall, our study highlights the importance of protein-based identification when compared with RNA and provides a rich resource of new and feasible targets for clinical assay development and in understanding the underlying biology of these tumors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Cancer Research
Molecular Cancer Research 医学-细胞生物学
CiteScore
9.90
自引率
0.00%
发文量
280
审稿时长
4-8 weeks
期刊介绍: Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信