Naglaa M Ahmed, Mosaad S Mohamed, Samir M Awad, Rania H Abd El-Hameed, Neama A Abd El-Tawab, Mohamed S Gaballah, Ahmed M Said
{"title":"新型 6-氨基-5-氰基-2-噻吩嘧啶衍生物的设计、合成、分子建模和生物学评价,作为抗白血病的强效抗癌剂和细胞凋亡诱导剂。","authors":"Naglaa M Ahmed, Mosaad S Mohamed, Samir M Awad, Rania H Abd El-Hameed, Neama A Abd El-Tawab, Mohamed S Gaballah, Ahmed M Said","doi":"10.1080/14756366.2024.2304625","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, a novel series of 6-amino-5-cyano-2-thiopyrimidines and condensed pyrimidines analogues were prepared. All the synthesized compounds <b>(1a-c, 2a-c, 3a-c, 4a-r</b> and <b>5a-c)</b> were evaluated for <i>in vitro</i> anticancer activity by the National Cancer Institute (NCI; MD, USA) against 60 cell lines. Compound <b>1c</b> showed promising anticancer activity and was selected for the five-dose testing. Results demonstrated that compound <b>1c</b> possessed broad spectrum anti-cancer activity against the nine cancerous subpanels tested with selectivity ratio ranging from 0.7 to 39 at the GI<sub>50</sub> level with high selectivity towards leukaemia. Mechanistic studies showed that Compound <b>1c</b> showed comparable activity to Duvelisib against PI3Kδ (IC<sub>50</sub> = 0.0034 and 0.0025 μM, respectively) and arrested cell cycle at the S phase and displayed significant increase in the early and late apoptosis in HL60 and leukaemia SR cells. The necrosis percentage showed a significant increase from 1.13% to 3.41% in compound <b>1c</b> treated HL60 cells as well as from 1.51% to 4.72% in compound <b>1c</b> treated leukaemia SR cells. Also, compound <b>1c</b> triggered apoptosis by activating caspase 3, Bax, P53 and suppressing Bcl<sub>2</sub>. Moreover, <b>1c</b> revealed a good safety profile against human normal lung fibroblast cell line (WI-38 cells). Molecular analysis of Duvelisib and compound <b>1c</b> in PI3K was performed. Finally, these results suggest that 2-thiopyrimidine derivative <b>1c</b> might serve as a model for designing novel anticancer drugs in the future.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2304625"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866072/pdf/","citationCount":"0","resultStr":"{\"title\":\"Design, synthesis, molecular modelling and biological evaluation of novel 6-amino-5-cyano-2-thiopyrimidine derivatives as potent anticancer agents against leukemia and apoptotic inducers.\",\"authors\":\"Naglaa M Ahmed, Mosaad S Mohamed, Samir M Awad, Rania H Abd El-Hameed, Neama A Abd El-Tawab, Mohamed S Gaballah, Ahmed M Said\",\"doi\":\"10.1080/14756366.2024.2304625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Herein, a novel series of 6-amino-5-cyano-2-thiopyrimidines and condensed pyrimidines analogues were prepared. All the synthesized compounds <b>(1a-c, 2a-c, 3a-c, 4a-r</b> and <b>5a-c)</b> were evaluated for <i>in vitro</i> anticancer activity by the National Cancer Institute (NCI; MD, USA) against 60 cell lines. Compound <b>1c</b> showed promising anticancer activity and was selected for the five-dose testing. Results demonstrated that compound <b>1c</b> possessed broad spectrum anti-cancer activity against the nine cancerous subpanels tested with selectivity ratio ranging from 0.7 to 39 at the GI<sub>50</sub> level with high selectivity towards leukaemia. Mechanistic studies showed that Compound <b>1c</b> showed comparable activity to Duvelisib against PI3Kδ (IC<sub>50</sub> = 0.0034 and 0.0025 μM, respectively) and arrested cell cycle at the S phase and displayed significant increase in the early and late apoptosis in HL60 and leukaemia SR cells. The necrosis percentage showed a significant increase from 1.13% to 3.41% in compound <b>1c</b> treated HL60 cells as well as from 1.51% to 4.72% in compound <b>1c</b> treated leukaemia SR cells. Also, compound <b>1c</b> triggered apoptosis by activating caspase 3, Bax, P53 and suppressing Bcl<sub>2</sub>. Moreover, <b>1c</b> revealed a good safety profile against human normal lung fibroblast cell line (WI-38 cells). Molecular analysis of Duvelisib and compound <b>1c</b> in PI3K was performed. Finally, these results suggest that 2-thiopyrimidine derivative <b>1c</b> might serve as a model for designing novel anticancer drugs in the future.</p>\",\"PeriodicalId\":15769,\"journal\":{\"name\":\"Journal of Enzyme Inhibition and Medicinal Chemistry\",\"volume\":\"39 1\",\"pages\":\"2304625\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866072/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Enzyme Inhibition and Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14756366.2024.2304625\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2024.2304625","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Design, synthesis, molecular modelling and biological evaluation of novel 6-amino-5-cyano-2-thiopyrimidine derivatives as potent anticancer agents against leukemia and apoptotic inducers.
Herein, a novel series of 6-amino-5-cyano-2-thiopyrimidines and condensed pyrimidines analogues were prepared. All the synthesized compounds (1a-c, 2a-c, 3a-c, 4a-r and 5a-c) were evaluated for in vitro anticancer activity by the National Cancer Institute (NCI; MD, USA) against 60 cell lines. Compound 1c showed promising anticancer activity and was selected for the five-dose testing. Results demonstrated that compound 1c possessed broad spectrum anti-cancer activity against the nine cancerous subpanels tested with selectivity ratio ranging from 0.7 to 39 at the GI50 level with high selectivity towards leukaemia. Mechanistic studies showed that Compound 1c showed comparable activity to Duvelisib against PI3Kδ (IC50 = 0.0034 and 0.0025 μM, respectively) and arrested cell cycle at the S phase and displayed significant increase in the early and late apoptosis in HL60 and leukaemia SR cells. The necrosis percentage showed a significant increase from 1.13% to 3.41% in compound 1c treated HL60 cells as well as from 1.51% to 4.72% in compound 1c treated leukaemia SR cells. Also, compound 1c triggered apoptosis by activating caspase 3, Bax, P53 and suppressing Bcl2. Moreover, 1c revealed a good safety profile against human normal lung fibroblast cell line (WI-38 cells). Molecular analysis of Duvelisib and compound 1c in PI3K was performed. Finally, these results suggest that 2-thiopyrimidine derivative 1c might serve as a model for designing novel anticancer drugs in the future.
期刊介绍:
Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents.
Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research.
The journal’s focus includes current developments in:
Enzymology;
Cell biology;
Chemical biology;
Microbiology;
Physiology;
Pharmacology leading to drug design;
Molecular recognition processes;
Distribution and metabolism of biologically active compounds.