{"title":"Rhodococcus opacus PD630 对 Brassica oleracea 植物修复硒的影响。","authors":"Sinead Morris, Diana Quispe-Arpasi, Piet N L Lens","doi":"10.1080/15226514.2024.2311725","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to evaluate the potential of microbial-enhanced <i>Brassica oleracea</i> for the phytoremediation of seleniferous soils. The effect of selenite (Se(IV)) and selenate (Se(VI)) on <i>B. oleracea</i> (1-100 mg.L<sup>-1</sup>) was examined through germination (7 d) and pot (30 d) trials. Microbial analysis was conducted to verify the toxic effect of various Se concentrations (1-500 mg.L<sup>-1</sup>) on <i>Rhodococcus opacus</i> PD360, and to determine if it exhibits plant growth promoter traits. <i>R. opacus</i> PD630 was found to tolerate high concentrations of both Se(IV) and Se(VI), above 100 mg.L<sup>-1</sup>. <i>R. opacus</i> PD630 reduced Se(IV) and Se(VI) over 7 days, with a Se conversion efficiency between 60 and 80%. Germination results indicated lower concentrations (0-10 mg.L<sup>-1</sup>) of Se(IV) and Se(VI) gave a higher shoot length (> 4 cm). <i>B. oleracea</i> accumulated 600-1,000 mg.kg<sup>-1 </sup>dry weight (DW) of Se(IV) and Se(VI), making it a secondary accumulator of Se. Moreover, seeds inoculated with <i>R. opacus</i> PD360 showed increased Se uptake (up to 1,200 mg Se.kg<sup>-1</sup> DW). In addition, bioconcentration and translocation factors were greater than one. The results indicate a synergistic effect between <i>R. opacus</i> PD630 and <i>B. oleracea</i> for Se phytoextraction from polluted soils.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1280-1290"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of <i>Rhodococcus opacus</i> PD630 on selenium phytoremediation by <i>Brassica oleracea</i>.\",\"authors\":\"Sinead Morris, Diana Quispe-Arpasi, Piet N L Lens\",\"doi\":\"10.1080/15226514.2024.2311725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study was to evaluate the potential of microbial-enhanced <i>Brassica oleracea</i> for the phytoremediation of seleniferous soils. The effect of selenite (Se(IV)) and selenate (Se(VI)) on <i>B. oleracea</i> (1-100 mg.L<sup>-1</sup>) was examined through germination (7 d) and pot (30 d) trials. Microbial analysis was conducted to verify the toxic effect of various Se concentrations (1-500 mg.L<sup>-1</sup>) on <i>Rhodococcus opacus</i> PD360, and to determine if it exhibits plant growth promoter traits. <i>R. opacus</i> PD630 was found to tolerate high concentrations of both Se(IV) and Se(VI), above 100 mg.L<sup>-1</sup>. <i>R. opacus</i> PD630 reduced Se(IV) and Se(VI) over 7 days, with a Se conversion efficiency between 60 and 80%. Germination results indicated lower concentrations (0-10 mg.L<sup>-1</sup>) of Se(IV) and Se(VI) gave a higher shoot length (> 4 cm). <i>B. oleracea</i> accumulated 600-1,000 mg.kg<sup>-1 </sup>dry weight (DW) of Se(IV) and Se(VI), making it a secondary accumulator of Se. Moreover, seeds inoculated with <i>R. opacus</i> PD360 showed increased Se uptake (up to 1,200 mg Se.kg<sup>-1</sup> DW). In addition, bioconcentration and translocation factors were greater than one. The results indicate a synergistic effect between <i>R. opacus</i> PD630 and <i>B. oleracea</i> for Se phytoextraction from polluted soils.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1280-1290\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2024.2311725\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2311725","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Effect of Rhodococcus opacus PD630 on selenium phytoremediation by Brassica oleracea.
The purpose of this study was to evaluate the potential of microbial-enhanced Brassica oleracea for the phytoremediation of seleniferous soils. The effect of selenite (Se(IV)) and selenate (Se(VI)) on B. oleracea (1-100 mg.L-1) was examined through germination (7 d) and pot (30 d) trials. Microbial analysis was conducted to verify the toxic effect of various Se concentrations (1-500 mg.L-1) on Rhodococcus opacus PD360, and to determine if it exhibits plant growth promoter traits. R. opacus PD630 was found to tolerate high concentrations of both Se(IV) and Se(VI), above 100 mg.L-1. R. opacus PD630 reduced Se(IV) and Se(VI) over 7 days, with a Se conversion efficiency between 60 and 80%. Germination results indicated lower concentrations (0-10 mg.L-1) of Se(IV) and Se(VI) gave a higher shoot length (> 4 cm). B. oleracea accumulated 600-1,000 mg.kg-1 dry weight (DW) of Se(IV) and Se(VI), making it a secondary accumulator of Se. Moreover, seeds inoculated with R. opacus PD360 showed increased Se uptake (up to 1,200 mg Se.kg-1 DW). In addition, bioconcentration and translocation factors were greater than one. The results indicate a synergistic effect between R. opacus PD630 and B. oleracea for Se phytoextraction from polluted soils.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.